
icepyx

unknown

Jan 05, 2024

GETTING STARTED

1 Origin and Purpose 7

2 Installation 9

3 Citing icepyx 11

4 Accessing ICESat-2 Data 13

5 Subsetting ICESat-2 Data 21

6 ICESat-2’s Nested Variables 27

7 Visualizing ICESat-2 Elevations 39

8 Reading ICESat-2 Data in for Analysis 43

9 ICESat-2 AWS cloud data access 49

10 QUEST Example: Finding Argo and ICESat-2 data 53

11 icepyx Documentation (API Reference) 59

12 icepyx ChangeLog 107

13 Project Contributors 127

14 Contribution Guidelines 129

15 How to Contribute 133

16 Recognizing Contributions 135

17 icepyx Internals 139

18 QUEST Supported Datasets 141

19 icepyx Development Plan 143

20 Release Guide 145

21 Contributor Covenant Code of Conduct 149

22 ICESat-2 Resource Guide 153

i

23 Contact Us 161

24 Who is using icepyx? 163

25 icepyx Adoption 165

Bibliography 167

Python Module Index 169

Index 171

ii

icepyx

Python tools for obtaining and working with ICESat-2 data

Quick Links: Installation | Citation | Examples | Source Code | Contact

icepyx is both a software library and a community composed of ICESat-2 data users, developers, and the scientific
community. We are working together to develop a shared library of resources - including existing resources, new
code, tutorials, and use-cases/examples - that simplify the process of querying, obtaining, analyzing, and manipulating
ICESat-2 datasets to enable scientific discovery.

Getting Started

New to ICESat-2 or icepyx? Learn how to install icepyx and use it to jumpstart your project today. Check out our
gallery of examples, too!

Installation Instructions

GETTING STARTED 1

example_notebooks/IS2_data_access.html
https://github.com/icesat2py/icepyx

icepyx

User Guide

The user guide provides in-depth information on the tools and functionality available for obtaining and interacting with
ICESat-2 data products.

Software Docs

2 GETTING STARTED

icepyx

Development Guide

Have an idea or an ancillary dataset to contribute to icepyx? Go here for information on best practices for developing
and contributing to icepyx.

Development Guide

GETTING STARTED 3

icepyx

Get in Touch

icepyx is more than just software! We’re a community of data producers, managers, and users who collaborate openly
and share code and skills for every step along the entire data pipeline. Find resources for your questions here!

Get Involved!

4 GETTING STARTED

icepyx

ICESat-2 Resources

Curious about other tools for working with ICESat-2 data? Want to share your resource? Check out the amazing work
already in progress!

ICESat-2 Resource Guide

GETTING STARTED 5

icepyx

6 GETTING STARTED

CHAPTER

ONE

ORIGIN AND PURPOSE

icepyx is both a software library and a community composed of ICESat-2 data users, developers, and the scientific
community. We are working together to develop a shared library of resources - including existing resources, new
code, tutorials, and use-cases/examples - that simplify the process of querying, obtaining, analyzing, and manipulating
ICESat-2 and relevant ancillary datasets to enable scientific discovery.

icepyx aims to provide a clearinghouse for code, functionality to improve interoperability, documentation, examples,
and educational resources that tackle disciplinary research questions while minimizing the amount of repeated effort
across groups utilizing similar datasets. icepyx also hopes to foster collaboration, open-science, and reproducible
workflows by integrating and sharing resources.

Many of the underlying tools from which icepyx was developed began as Jupyter Notebooks developed for and during
the cryosphere-themed ICESat-2 Hackweek at the University of Washington in June 2019 or as scripts written and
used by the ICESat-2 Science Team members. Originally called icesat2py, the project combined and generalized these
scripts into a unified framework, adding examples, documentation, and testing where necessary and making them
accessible for everyone. icepyx is now a domain-agnostic, standalone software package and community (under the
broader icesat2py GitHub organization) that continues to build functionality for obtaining and working with ICESat-2
data products locally and in the cloud. It also improves interoperability for ICESat-2 datasets with other open-source
tools. Our resources guide provides additional information on both the foundational documents for icepyx and closely
related libraries for working with ICESat-2 data.

7

https://github.com/icesat2py

icepyx

8 Chapter 1. Origin and Purpose

CHAPTER

TWO

INSTALLATION

2.1 Quickstart

The simplest (and recommended) way to install icepyx is by using the mamba package manager (or conda, which can
be used in place of any of the mamba commands shown here). The command below takes care of setting up a virtual
environment and installs icepyx along with all the necessary dependencies:

mamba env create --name icepyx-env --channel conda-forge icepyx

To activate the virtual environment, you can do:

mamba activate icepyx-env

2.2 Using mamba

If you already have a virtual mamba/conda environment set up and activated, you can install the latest stable release of
icepyx from conda-forge like so:

mamba install icepyx

To upgrade an installed version of icepyx to the latest stable release, do:

mamba update icepyx

2.3 Using pip

Alternatively, you can also install icepyx using pip.

pip install icepyx

Windows users will need to first install Fiona; please look at the instructions there. Windows users may consider
installing Fiona using pipwin

pip install pipwin
pipwin install Fiona

9

https://mamba.readthedocs.io/en/latest/index.html
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html
https://anaconda.org/conda-forge/icepyx
https://pip.pypa.io/en/stable/
https://pypi.org/project/Fiona/

icepyx

2.4 For the latest features

Currently, conda-forge and pip packages are generated with each tagged release. This means it is possible that these
methods will not install the latest merged features of icepyx. In this case, icepyx is also available for use via the GitHub
repository. The contents of the repository can be downloaded as a zipped file or cloned.

To use icepyx this way, fork this repo to your own account, then git clone the repo onto your system. To clone the
repository:

git clone https://github.com/icesat2py/icepyx.git

Provided the location of the repo is part of your $PYTHONPATH, you should simply be able to add import icepyx to
your Python document. Alternatively, in a command line or terminal, navigate to the folder in your cloned repository
containing setup.py and run

pip install -e.

10 Chapter 2. Installation

https://github.com/icesat2py/icepyx/archive/main.zip

CHAPTER

THREE

CITING ICEPYX

3.1 icepyx

This community and software is developed with the goal of supporting science applications. Thus, our contributors
(including those who have developed the packages used within icepyx) and maintainers justify their efforts and demon-
strate the impact of their work through citations.

If you have used icepyx in your work, please consider citing our library. We encourage you to use a version-specific
citation and DOI (available from Zenodo) to improve reproducibility and let users know the state of the software at the
time of your analysis.

A non-versioned citation of icepyx:
The icepyx Developers, (2023). icepyx: Python tools for obtaining and working with ICESat-2 data. Zenodo.
https://doi.org/10.5281/zenodo.7729175

A bibtex version for users working in Latex:

@Misc{icepyx,
author = {{The icepyx Developers}},
organization = {icesat2py},
title = {{icepyx: Python} tools for obtaining and working with {ICESat-2} data},
year = {2023},
doi = "https://doi.org/10.5281/zenodo.7729175",
publisher = {Zenodo},
url = "https://github.com/icesat2py/icepyx",
}

For more information on the “icepyx Developers”, please see our Attribution Guidelines. See our docs for a full list of
contributors and their contribution types.

3.2 icepyx Dependencies

If you have used one of the included packages to extend your data analysis capabilities within icepyx, please consider
additionally citing that work, because it represents an independent software contribution to the open-source commu-
nity. SciPy provides a helpful resource for citing packages within the SciPy ecosystem (including Matplotlib, NumPy,
pandas, and SciPy). Links to citation information for other commonly used packages are below.

• fiona

• GeoPandas

• Pangeo

11

https://zenodo.org/record/7729175
https://doi.org/10.5281/zenodo.7729175
https://icepyx.readthedocs.io/en/latest/contributing/attribution_link.html
https://icepyx.readthedocs.io/en/latest/contributing/contributors_link.html
https://icepyx.readthedocs.io/en/latest/contributing/contributors_link.html
https://www.scipy.org/index.html
https://www.scipy.org/citing.html
https://github.com/Toblerity/Fiona/blob/master/CITATION.txt
https://github.com/geopandas/geopandas/issues/812
https://github.com/pangeo-data/pangeo/issues/651

icepyx

• shapely

• xarray

3.3 ICESat-2 Data

ICESat-2 data citation depends on the exact dataset used. Citation information for each data product can be found
through the NSIDC website.

12 Chapter 3. Citing icepyx

https://github.com/Toblerity/Shapely/blob/master/CITATION.txt
https://github.com/pydata/xarray/blob/main/CITATION.cff
https://nsidc.org/data/icesat-2/data-sets

CHAPTER

FOUR

ACCESSING ICESAT-2 DATA

This notebook (download) illustrates the use of icepyx for programmatic ICESat-2 data query and download from the
NASA NSIDC DAAC (NASA National Snow and Ice Data Center Distributed Active Archive Center). A complimen-
tary notebook demonstrates in greater detail the subsetting options available when ordering data.

Import packages, including icepyx

import icepyx as ipx
import os
import shutil
%matplotlib inline

4.1 Quick-Start Guide

The entire process of getting ICESat-2 data (from query to download) can ultimately be accomplished in two minimal
lines of code:

region_a = ipx.Query(short_name, spatial_extent, date_range)

region_a.download_granules(path)

where the function inputs are described in more detail below.

The rest of this notebook explains the required inputs used above, optional inputs not available in the minimal
example, and the other data search and visualization tools built in to icepyx that make it easier for the user to
find, explore, and download ICESat-2 data programmatically from NSIDC. The detailed steps outlined and the
methods showcased below are meant to give the user more control over the data they find and download (including
options to order/download only the relevant portions of a data granule), some of which are called using default values
behind the scenes if the user simply skips to the download_granules step.

4.2 Key Steps for Programmatic Data Access

There are several key steps for accessing data from the NSIDC API:

1. Define your parameters (spatial, temporal, dataset, etc.)

2. Query the NSIDC API to find out more information about the dataset

3. Define additional parameters (e.g. subsetting/customization options)

4. Order your data

13

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access2-subsetting.html

icepyx

5. Download your data

icepyx streamlines this process into a minimal number of lines of code.

4.2.1 Create an ICESat-2 data object with the desired search parameters

There are three required inputs, depending on how you want to search for data. Two are required in all cases:

• short_name = the data product of interest, known as its “short name”. See https://nsidc.org/data/icesat-2/
products for a list of the available data products.

• spatial extent = a region of interest to search within. This can be entered as a bounding box, polygon vertex
coordinate pairs, or a polygon geospatial file (currently shp, kml, and gpkg are supported).

– bounding box: Given in decimal degrees for the lower left longitude, lower left latitude, upper right longi-
tude, and upper right latitude

– polygon vertices: Given as longitude, latitude coordinate pairs of decimal degrees with the last entry a
repeat of the first.

– polygon file: A string containing the full file path and name.

NOTE: The input keyword for short_name was updated in the code from dataset to product to match common
usage. This should not affect users providing positional inputs as demonstrated in this tutorial.

NOTE: You can submit at most one bounding box or a list of lonlat polygon coordinates per object instance. Per NSIDC
requirements, geospatial polygon files may only contain one feature (polygon).

Then, for all non-gridded products (ATL<=13), you must include AT LEAST one of the following inputs (temporal or
orbital constraints):

• date_range = the date range for which you would like to search for results. The following formats are accepted:

– A list of two ‘YYYY-MM-DD’ strings separated by a comma

– A list of two ‘YYYY-DOY’ strings separated by a comma

– A list of two datetime.date or datetime.datetime objects

– Dict with the following keys:

∗ start_date: start date, type can be datetime.datetime, datetime.date, or strings (format ‘YYYY-MM-
DD’ or ‘YYYY-DOY’)

∗ end_date: end date, type can be datetime.datetime, datetime.date, or strings (format ‘YYYY-MM-
DD’ or ‘YYYY-DOY’)

• cycles = Which orbital cycle to use, input as a numerical string or a list of strings. If no input is given, this
value defaults to all available cycles within the search parameters. An orbital cycle refers to the 91-day repeat
period of the ICESat-2 orbit.

• tracks = Which Reference Ground Track (RGT) to use, input as a numerical string or a list of strings. If no
input is given, this value defaults to all available RGTs within the spatial and temporal search parameters.

Below are examples of each type of spatial extent and temporal input and an example using orbital parameters. Please
choose and run only one of the input option cells to set your spatial and temporal parameters.

bounding box
short_name = 'ATL06'
spatial_extent = [-55, 68, -48, 71]
date_range = ['2019-02-20','2019-02-28']

14 Chapter 4. Accessing ICESat-2 Data

https://nsidc.org/data/icesat-2/products
https://nsidc.org/data/icesat-2/products
https://icesat-2.gsfc.nasa.gov/science/specs

icepyx

polygon vertices (here equivalent to the bounding box, above)
short_name = 'ATL06'
spatial_extent = [(-55, 68), (-55, 71), (-48, 71), (-48, 68), (-55, 68)]
date_range = ['2019-02-20','2019-02-28']

bounding box with 'YYYY-DOY' date range (equivalent to 'YYYY-MM-DD' date ranges above)
short_name = 'ATL06'
spatial_extent = [-55, 68, -48, 71]
date_range = ['2019-051','2019-059']

polygon vertices with datetime.datetime date ranges
import datetime as dt

start_dt = dt.datetime(2019, 2, 20, 0, 10, 0)
end_dt = dt.datetime(2019, 2, 28, 14, 45, 30)
short_name = 'ATL06'
spatial_extent = [(-55, 68), (-55, 71), (-48, 71), (-48, 68), (-55, 68)]
date_range = [start_dt, end_dt]

bounding box with dict containing date ranges
short_name = 'ATL06'
spatial_extent = [-55, 68, -48, 71]
date_range = {"start_date": start_dt, "end_date": '2019-02-28'}

polygon geospatial file (metadata match but no subset match)
short_name = 'ATL06'
spatial_extent = './supporting_files/data-access_PineIsland/glims_polygons.kml'
date_range = ['2019-02-22','2019-02-28']

#polygon geospatial file (subset and metadata match)
short_name = 'ATL06'
spatial_extent = './supporting_files/data-access_PineIsland/glims_polygons.shp'
date_range = ['2019-10-01','2019-10-05']

#polygon geospatial file (same area as other examples; subset and metadata match)
short_name = 'ATL06'
spatial_extent = './supporting_files/simple_test_poly.gpkg'
date_range = ['2019-10-01','2019-10-05']

Create the data object using our inputs

region_a = ipx.Query(short_name, spatial_extent, date_range)

using orbital parameters with one of the above data products + spatial parameters
region_a = ipx.Query(short_name, spatial_extent,

cycles=['03','04','05','06','07'], tracks=['0849','0902'])

print(region_a.product)
print(region_a.product_version)
print(region_a.cycles)
print(region_a.tracks)

4.2. Key Steps for Programmatic Data Access 15

icepyx

These properties include visualization of the spatial extent on a map. The style of map you will see depends on whether
or not you have a certain library, geoviews, installed. Under the hood, this is because the proj library must be installed
with conda (it is not available from PyPI) to support some geoviews dependencies. With geoviews, this plotting
function returns an interactive map. Otherwise, your spatial extent will plot on a static map using matplotlib.

print(region_a.spatial_extent)
region_a.visualize_spatial_extent()

Formatted parameters and function calls allow us to see the the properties of the data object we have created.

print(region_a.product)
print(region_a.temporal) # .dates, .start_time, .end_time can also be used for a piece␣
→˓of this information
print(region_a.dates)
print(region_a.start_time)
print(region_a.end_time)
print(region_a.cycles)
print(region_a.tracks)
print(region_a.product_version)
region_a.visualize_spatial_extent()

There are also several optional inputs to allow the user finer control over their search. Start and end time are only valid
inputs on a temporally limited search, and they are ignored if your date_range input is a datetime.datetime object.

• start_time = start time to search for data on the start date. If no input is given, this defaults to 00:00:00.

• end_time = end time for the end date of the temporal search parameter. If no input is given, this defaults to
23:59:59.

Times must be input as ‘HH:mm:ss’ strings or datetime.time objects.

• version = What version of the data product to use, input as a numerical string. If no input is given, this value
defaults to the most recent version of the product specified in short_name.

NOTE Version 002 is used as an example in the below cell. However, using it will cause ‘no results’ errors in granule
ordering for some search parameters. These issues have been resolved in later versions of the data products, so it is
best to use the most recent version where possible. Similarly, if you try to order/download too old a version (such that
it is no longer hosted by NSIDC), you will get a “no data matched your request” error. Thus, you will need to update
the version associated with region_a and rerun the next cell for the rest of this notebook to run.

region_a = ipx.Query(short_name, spatial_extent, date_range, \
start_time='03:30:00', end_time='21:30:00', version='002')

print(region_a.product)
print(region_a.dates)
print(region_a.product_version)
print(region_a.spatial)
print(region_a.temporal)

Alternatively, you can also just create the query object without creating named variables first:

region_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-01','2019-02-28'],
start_time='00:00:00', end_time='23:59:59', version='002')

16 Chapter 4. Accessing ICESat-2 Data

icepyx

4.2.2 More information about your query object

In addition to viewing the stored object information shown above (e.g. product short name, start and end date and time,
version, etc.), we can also request summary information about the data product itself or confirm that we have manually
specified the latest version.

region_a.product_summary_info()
print(region_a.latest_version())

If the summary does not provide all of the information you are looking for, or you would like to see information for
previous versions of the data product, all available metadata for the collection product is available in a readable format.

region_a.product_all_info()

4.2.3 Querying a data product

In order to search the product collection for available data granules, we need to build our search parameters. This is
done automatically behind the scenes when you run region_a.avail_granules(), but you can also build and view
them by calling region_a.CMRparams. These are formatted as a dictionary of key:value pairs according to the CMR
documentation.

#build and view the parameters that will be submitted in our query
region_a.CMRparams

Now that our parameter dictionary is constructed, we can search the CMR database for the available granules. Granules
returned by the CMR metadata search are automatically stored within the data object. The search completed at this
level relies completely on the granules’ metadata. As a result, some (and in rare cases all) of the granules returned may
not actually contain data in your specified region, particularly if the region is small or located near the boundaries of a
given granule. If this is the case, the subsetter will not return any data when you actually place the order. A warning
message will be issued during ordering for each granule to which this applies (but no message is output for successfully
subsetted granules, so don’t worry!)

#search for available granules and provide basic summary info about them
region_a.avail_granules()

#get a list of granule IDs for the available granules
region_a.avail_granules(ids=True)

#print detailed information about the returned search results
region_a.granules.avail

4.2.4 Log in to NASA Earthdata

When downloading data from NSIDC, all users must login using a valid (free) Earthdata account. The process of
authenticating is handled by icepyx by creating and handling the required authentication to interface with the data at
the DAAC (including ordering and download). Authentication is completed as login-protected features are accessed.
In order to allow icepyx to login for us we still have to make sure that we have made our Earthdata credentials available
for icepyx to find.

There are multiple ways to provide your Earthdata credentials via icepyx. Behind the scenes, icepyx is using the
earthaccess library. The earthaccess documentation automatically tries three primary mechanisms for logging in, all
of which are supported by icepyx:

4.2. Key Steps for Programmatic Data Access 17

https://cmr.earthdata.nasa.gov/search/site/docs/search/api.html
https://cmr.earthdata.nasa.gov/search/site/docs/search/api.html
https://nsidc.github.io/earthaccess/
https://nsidc.github.io/earthaccess/tutorials/restricted-datasets/#auth

icepyx

• with EARTHDATA_USERNAME and EARTHDATA_PASSWORD environment variables (these are the same as the ones
you might have set for icepyx previously)

• through an interactive, in-notebook login (used below); passwords are not shown plain text with this option

• with stored credentials in a .netrc file (not recommended for security reasons)

Important Authentication Update

Previously, icepyx required you to explicitly use the .earthdata_login() function to login. Running this function
is deprecated and will result in an error, as icepyx will call the login function as needed. The user will still need to
provide their credentials using one of the three methods decribed above.

4.2.5 Additional Parameters and Subsetting

Once we have generated our session, we must build the required configuration parameters needed to actually download
data. These will tell the system how we want to download the data. As with the CMR search parameters, these will
be built automatically when you run region_a.order_granules(), but you can also create and view them with
region_a.reqparams. The default parameters, given below, should work for most users.

• page_size = 2000. This is the number of granules we will request per order.

• page_num = 1. Determine the number of pages based on page size and the number of granules available. If no
page_num is specified, this calculation is done automatically to set page_num, which then provides the number
of individual orders we will request given the number of granules.

• request_mode = ‘async’

• agent = ‘NO’

• include_meta = ‘Y’

More details about the configuration parameters

request_mode is “asynchronous” by default, which allows concurrent requests to be queued and processed without the
need for a continuous connection between you and the API endpoint. In contrast, using a “synchronous” request_mode
means that the request relies on a direct, continous connection between you and the API endpoint. Outputs are directly
downloaded, or “streamed”, to your working directory. For this tutorial, we will set the request mode to asynchronous.

Use the streaming request_modewith caution: While it can be beneficial to stream outputs directly to your local
directory, note that timeout errors can result depending on the size of the request, and your request will not be
queued in the system if NSIDC is experiencing high request volume. For best performance, NSIDC recommends
setting page_size=1 to download individual outputs, which will eliminate extra time needed to zip outputs and
will ensure faster processing times per request.

Recall that we queried the total number and volume of granules prior to applying customization services. page_size
and page_num can be used to adjust the number of granules per request up to a limit of 2000 granules for asynchronous,
and 100 granules for synchronous (streaming). For now, let’s select 9 granules to be processed in each zipped request.
For ATL06, the granule size can exceed 100 MB so we want to choose a granule count that provides us with a reasonable
zipped download size.

print(region_a.reqparams)
region_a.reqparams['page_size'] = 9
print(region_a.reqparams)

18 Chapter 4. Accessing ICESat-2 Data

icepyx

Subsetting

In addition to the required parameters (CMRparams and reqparams) that are submitted with our order, for ICESat-2
data products we can also submit subsetting parameters to NSIDC. For a deeper dive into subsetting, please see our
Subsetting Tutorial Notebook, which covers subsetting in more detail, including how to get a list of subsetting options,
how to build your list of subsetting parameters, and how to generate a list of desired variables (most datasets have
more than 200 variable fields!), including using pre-built default lists (these lists are still in progress and we welcome
contributions!).

Subsetting utilizes the NSIDC’s built in subsetter to extract only the data you are interested (spatially, temporally,
variables of interest, etc.). The advantages of using the NSIDC’s subsetter include:

• easily reproducible downloads, particularly when coupled with an icepyx query object

• smaller file size, meaning faster downloads, less storage required, and no need to subset the data on your own

• still easy to go back and order more data/variables with the same or similar search parameters

• no extraneous data means you can move directly to analysis and easily navigate your dataset

Certain subset parameters are specified by default unless subset=False is included as an input to order_granules()
or download_granules() (which calls order_granules() under the hood). A separate, companion notebook tuto-
rial covers subsetting in more detail, including how to get a list of subsetting options, how to build your list of subsetting
parameters, and how to generate a list of desired variables (most products have more than 200 variable fields!), including
using pre-built default lists (these lists are still in progress and we welcome contributions!).

As for the CMR and required parameters, default subset parameters can be built and viewed using subsetparams.
Where an input spatial file is used, rather than a bounding box or manually entered polygon, the spatial file will be used
for subsetting (unless subset is set to False) but not show up in the subsetparams dictionary.

icepyx also makes it easy to take advantage of the reformatting (e.g. file format conversion) options offered by NSIDC.
These are covered in more detail in the Subsetting Tutorial Notebook.

region_a.subsetparams()

4.2.6 Place the order

Then, we can send the order to NSIDC using the order_granules function. Information about the granules ordered and
their status will be printed automatically. Status information can also be emailed to the address associated with your
EarthData account when the email kwarg is set to True. Additional information on the order, including request URLs,
can be viewed by setting the optional keyword input ‘verbose’ to True.

region_a.order_granules()
region_a.order_granules(verbose=True, subset=False, email=False)

#view a short list of order IDs
region_a.granules.orderIDs

4.2. Key Steps for Programmatic Data Access 19

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access2-subsetting.html
https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access2-subsetting.html

icepyx

4.2.7 Download the order

Finally, we can download our order to a specified directory (which needs to have a full path but doesn’t have to point
to an existing directory) and the download status will be printed as the program runs. Additional information is again
available by using the optional boolean keyword verbose.

path = './download'
region_a.download_granules(path)

Credits

• original notebook by: Jessica Scheick

• notebook contributors: Amy Steiker and Tyler Sutterley

• source material: NSIDC Data Access Notebook by Amy Steiker and Bruce Wallin and 2020 Hackweek Data
Access Notebook by Jessica Scheick and Amy Steiker

20 Chapter 4. Accessing ICESat-2 Data

https://github.com/ICESAT-2HackWeek/ICESat2_hackweek_tutorials/tree/master/03_NSIDCDataAccess_Steiker
https://github.com/ICESAT-2HackWeek/2020_ICESat-2_Hackweek_Tutorials/blob/main/06-07.Data_Access/02-Data_Access_rendered.ipynb
https://github.com/ICESAT-2HackWeek/2020_ICESat-2_Hackweek_Tutorials/blob/main/06-07.Data_Access/02-Data_Access_rendered.ipynb

CHAPTER

FIVE

SUBSETTING ICESAT-2 DATA

This notebook (download) illustrates the use of icepyx for subsetting ICESat-2 data ordered through the NSIDC DAAC.
We’ll show how to find out what subsetting options are available and how to specify the subsetting options for your
order.

For more information on using icepyx to find, order, and download data, see our complimentary ICESat-2 Data Access
Notebook.

Questions? Be sure to check out the FAQs throughout this notebook, indicated as italic headings.

5.1 What is SUBSETTING anyway?

Anyone who’s worked with geospatial data has probably encountered subsetting. Typically, we search for data wher-
ever it is stored and download the chunks (aka granules, scenes, passes, swaths, etc.) that contain something we are
interested in. Then, we have to extract from each chunk the pieces we actually want to analyze. Those pieces might
be geospatial (i.e. an area of interest), temporal (i.e. certain months of a time series), and/or certain variables. This
process of extracting the data we are going to use is called subsetting.

In the case of ICESat-2 data coming from the NSIDC DAAC, we can do this subsetting step on the data prior to
download, reducing our number of data processing steps and resulting in smaller, faster downloads and storage.

Import packages, including icepyx

import icepyx as ipx

import numpy as np
import xarray as xr
import pandas as pd

import h5py
import os,json
from pprint import pprint

Create a query object and log in to Earthdata

For this example, we’ll be working with a sea ice product (ATL09) for an area along West Greenland (Disko Bay).

region_a = ipx.Query('ATL09',[-55, 68, -48, 71],['2019-02-22','2019-02-28'], \
start_time='00:00:00', end_time='23:59:59')

Important Authentication Update

21

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access.html
https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access.html

icepyx

Previously, icepyx required you to explicitly use the .earthdata_login() function to login. Running this function
is deprecated and will result in an error, as icepyx will call the login function as needed. The user will still need to
provide their credentials.

5.2 Discover Subsetting Options

You can see what subsetting options are available for a given product by calling show_custom_options(). The
options are presented as a series of headings followed by available values in square brackets. Headings are:

• Subsetting Options: whether or not temporal and spatial subsetting are available for the data product

• Data File Formats (Reformatting Options): return the data in a format other than the native hdf5 (submitted
as a key=value kwarg to order_granules(format='NetCDF4-CF'))

• Data File (Reformatting) Options Supporting Reprojection: return the data in a reprojected reference frame.
These will be available for gridded ICESat-2 L3B data products.

• Data File (Reformatting) Options NOT Supporting Reprojection: data file formats that cannot be delivered
with reprojection

• Data Variables (also Subsettable): a dictionary of variable name keys and the paths to those variables available
in the product

region_a.show_custom_options(dictview=True)

By default, spatial and temporal subsetting based on your initial inputs is applied to your order unless you specify
subset=False to order_granules() or download_granules() (which calls order_granules under the hood
if you have not already placed your order) functions. Additional subsetting options must be specified as keyword
arguments to the order/download functions.

Although some file format conversions and reprojections are possible using the format, projection,and
projection_parameters keywords, the rest of this tutorial will focus on variable subsetting, which is provided
with the Coverage keyword.

5.2.1 Why do I have to provide spatial bounds to icepyx even if I don’t use them to
subset my data order?

Because they’re still needed for the granule level search. Spatial inputs are usually required for any data search, on
any platform, even if your search parameters cover the entire globe.

The spatial information you provide is used to search the data repository and determine which granules might contain
data over your area of interest. When you use that spatial information for subsetting, it’s actually asking the NSIDC
subsetter to extract the appropriate data from each granule. Thus, even if you set subset=False and download entire
granules, you still need to provide some inputs on what geographic area you’d like data for.

22 Chapter 5. Subsetting ICESat-2 Data

icepyx

5.3 About Data Variables in a query object

A given ICESat-2 product may have over 200 variable + path combinations. icepyx includes a custom Variables
module that is “aware” of the ATLAS sensor and how the ICESat-2 data products are stored. The ICESat-2 Data
Variables Example provides a detailed set of examples on how to use icepyx’s built in Variables module.

Thus, this notebook uses a default list of wanted variables to showcase subsetting and refers the user to the aforemen-
tioned Jupyter Notebook for a more thorough exploration of ICESat-2 product variables.

5.3.1 Determine what variables are available for your data product

There are multiple ways to get a complete list of available variables. To increase readability, some display options (2
and 3, below) show the 200+ variable + path combinations as a dictionary where the keys are variable names and the
values are the paths to that variable.

1. region_a.order_vars.avail, a list of all valid path+variable strings

2. region_a.show_custom_options(dictview=True), all available subsetting options

3. region_a.order_vars.parse_var_list(region_a.order_vars.avail), a dictionary of variable:paths
key:value pairs

region_a.order_vars.avail()

By passing the boolean options=True to the avail method, you can obtain lists of unique possible variable inputs
(var_list inputs) and path subdirectory inputs (keyword_list and beam_list inputs) for your data product. These can be
helpful for building your wanted variable list.

region_a.order_vars.avail(options=True)

5.4 Why not just download all the data and subset locally? What if I
need more variables/granules?

Taking advantage of the NSIDC subsetter is a great way to reduce your download size and thus your download time and
the amount of storage required, especially if you’re storing your data locally during analysis. By downloading your
data using icepyx, it is easy to go back and get additional data with the same, similar, or different parameters (e.g. you
can keep the same spatial and temporal bounds but change the variable list). Related tools (e.g. captoolkit) will let
you easily merge files if you’re uncomfortable merging them during read-in for processing.

5.4.1 Building the default wanted variable list

region_a.order_vars.wanted

region_a.order_vars.append(defaults=True)
pprint(region_a.order_vars.wanted)

5.3. About Data Variables in a query object 23

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_variables.html
https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_variables.html
https://github.com/fspaolo/captoolkit

icepyx

5.5 Applying variable subsetting to your order and download

In order to have your wanted variable list included with your order, you must pass it as a keyword argument to the
subsetparams() attribute or the order_granules() or download_granules() (which calls order_granules
under the hood if you have not already placed your order) functions.

region_a.subsetparams(Coverage=region_a.order_vars.wanted)

Or, you can put the Coverage parameter directly into order_granules: region_a.
order_granules(Coverage=region_a.order_vars.wanted)

However, then you cannot view your subset parameters (region_a.subsetparams) prior to submitting your order.

region_a.order_granules()# <-- you do not need to include the 'Coverage' kwarg to
order if you have already included it in a call to␣

→˓subsetparams

region_a.download_granules('/home/jovyan/icepyx/dev-notebooks/vardata') # <-- you do not␣
→˓need to include the 'Coverage' kwarg to

download if you have already submitted it with your order

5.5.1 Why does the subsetter say no matching data was found?

Sometimes, granules (“files”) returned in our initial search end up not containing any data in our specified area of
interest. This is because the initial search is completed using summary metadata for a granule. You’ve likely encoun-
tered this before when viewing available imagery online: your spatial search turns up a bunch of images with only a
few border or corner pixels, maybe even in no data regions, in your area of interest. Thus, when you go to extract the
data from the area you want (i.e. spatially subset it), you don’t get any usable data from that image.

5.5.2 Check the variable list in your downloaded file

Compare the available variables associated with the full product relative to those in your downloaded data file.

put the full filepath to a data file here. You can get this in JupyterHub by␣
→˓navigating to the file,
right clicking, and selecting copy path. Then you can paste the path in the quotes␣
→˓below.
fn = ''

5.6 Check the downloaded data

Get all latitude variables in your downloaded file:

varname = 'latitude'

varlist = []
def IS2h5walk(vname, h5node):

if isinstance(h5node, h5py.Dataset):
varlist.append(vname)

(continues on next page)

24 Chapter 5. Subsetting ICESat-2 Data

icepyx

(continued from previous page)

return

with h5py.File(fn,'r') as h5pt:
h5pt.visititems(IS2h5walk)

for tvar in varlist:
vpath,vn = os.path.split(tvar)
if vn==varname: print(tvar)

5.6.1 Compare to the variable paths available in the original data

region_a.order_vars.parse_var_list(region_a.order_vars.avail)[0][varname]

Credits

• notebook contributors: Zheng Liu, Jessica Scheick, and Amy Steiker

• some source material: NSIDC Data Access Notebook by Amy Steiker and Bruce Wallin

5.6. Check the downloaded data 25

https://github.com/ICESAT-2HackWeek/ICESat2_hackweek_tutorials/tree/main/03_NSIDCDataAccess_Steiker

icepyx

26 Chapter 5. Subsetting ICESat-2 Data

CHAPTER

SIX

ICESAT-2’S NESTED VARIABLES

This notebook (download) illustrates the use of icepyx for managing lists of available and wanted ICESat-2 data
variables. The two use cases for variable management within your workflow are:

1. During the data access process, whether that’s via order and download (e.g. via NSIDC DAAC) or remote (e.g.
via the cloud).

2. When reading in data to a Python object (whether from local files or the cloud).

A given ICESat-2 product may have over 200 variable + path combinations. icepyx includes a custom Variables
module that is “aware” of the ATLAS sensor and how the ICESat-2 data products are stored. The module can be
accessed independently and can also be accessed as a component of a Query object or Read object.

This notebook illustrates in detail how the Variables module behaves. We use the module independently and also
show how powerful it is directly in the icepyx workflow using a Query data access example. Module usage using Query
is analogous through an icepyx ICESat-2 Read object. More detailed example workflows specifically for the query and
read tools within icepyx are available as separate Jupyter Notebooks.

Questions? Be sure to check out the FAQs throughout this notebook, indicated as italic headings.

6.1 Why do ICESat-2 products need a custom variable manager?

It can be confusing and cumbersome to comb through the 200+ variable and path combinations contained in ICESat-2
data products. An hdf5 file is built like a folder with files in it. Opening an ICESat-2 file can be like opening a new
folder with over 200 files in it and manually searching for only ones you want!

The icepyx Variables module makes it easier for users to quickly find and extract the specific variables they would
like to work with across multiple beams, keywords, and variables and provides reader-friendly formatting to browse
variables. A future development goal for icepyx includes developing an interactive widget to further improve the user
experience. For data read-in, additional tools are available to target specific beam characteristics (e.g. strong versus
weak beams).

Import packages, including icepyx

import icepyx as ipx
from pprint import pprint

27

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access.html
https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_read-in.html

icepyx

6.2 Creating or Accessing ICESat-2 Variables

There are three ways to create or access an ICESat-2 Variables object in icepyx:

1. Access via the .order_vars property of a Query object

2. Access via the .vars property of a Read object

3. Create a stand-alone ICESat-2 Variables object using a local file, cloud file, or a product name

An example of each of these is shown below.

6.2.1 1. Access Variables via the .order_vars property of a Query object

region_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-22','2019-02-28'], \
start_time='00:00:00', end_time='23:59:59')

Accessing Variables
region_a.order_vars

Showing the variable paths
region_a.order_vars.avail()

6.2.2 2. Access via the .vars property of a Read object

path_root = '/full/path/to/your/data/'
reader = ipx.Read(path_root)

Accessing Variables
reader.vars

Showing the variable paths
reader.vars.avail()

6.2.3 3. Create a stand-alone Variables object

You can also generate an independent Variables object. This can be done using either:

1. The filepath to a local or cloud file you’d like a variables list for

2. The product name (and optionally version) of a an ICESat-2 product

Note: Cloud data access requires a valid Earthdata login; you will be prompted to log in if you are not already
authenticated.

Create a variables object from a filepath:

filepath = '/full/path/to/your/data.h5'
v = ipx.Variables(path=filepath)

v.avail()

28 Chapter 6. ICESat-2’s Nested Variables

icepyx

Create a variables object from a product. The version argument is optional.

v = ipx.Variables(product='ATL03')

v.avail()

v = ipx.Variables(product='ATL03', version='006')

v.avail()

Now that you know how to create or access Variables the remainder of this notebook showcases the functions availble
for building and modifying variables lists. Remember, the example shown below uses a Query object, but the same
methods are available if you are using a Read object or a Variables object.

6.3 Interacting with ICESat-2 Data Variables

Each variables instance (which is actually an associated Variables class object) contains two variable list attributes.
One is the list of possible or available variables (avail attribute) and is unmutable, or unchangeable, as it is based on
the input product specifications or files. The other is the list of variables you’d like to actually have (in your downloaded
file or data object) from all the potential options (wanted attribute) and is updateable.

Thus, your avail list depends on your data source and whether you are accessing or reading data, while your wanted
list may change for each analysis you are working on or depending on what variables you want to see.

The variables parameter has methods to:

• get a list of all available variables, either available from the NSIDC or the file (avail() method).

• append new variables to the wanted list (append() method).

• remove variables from the wanted list (remove() method).

We’ll showcase the use of all of these methods and attributes below using an icepyx.Query object. Usage is identical
in the case of an icepyx.Read object. More detailed example workflows specifically for the query and read tools
within icepyx are available as separate Jupyter Notebooks.

Create a query object and log in to Earthdata

For this example, we’ll be working with a land ice product (ATL06) for an area along West Greenland (Disko Bay). A
second option for an atmospheric product (ATL09) that uses profiles instead of the ground track (gt) categorization is
also provided.

region_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-22','2019-02-28'], \
start_time='00:00:00', end_time='23:59:59')

Uncomment and run the code in this cell to use the second variable subsetting suite of␣
→˓examples,
with the beam specifier containing "profile" instead of "gt#l"

region_a = ipx.Query('ATL09',[-55, 68, -48, 71],['2019-02-22','2019-02-28'], \
start_time='00:00:00', end_time='23:59:59')

Important Authentication Update

6.3. Interacting with ICESat-2 Data Variables 29

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access.html
https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_read-in.html

icepyx

Previously, icepyx required you to explicitly use the .earthdata_login() function to login. Running this function
is deprecated and will result in an error, as icepyx will call the login function as needed. The user will still need to
provide their credentials.

6.3.1 ICESat-2 data variables

ICESat-2 data is natively stored in a nested file format called hdf5. Much like a directory-file system on a computer,
each variable (file) has a unique path through the heirarchy (directories) within the file. Thus, some variables (e.g.
'latitude', 'longitude') have multiple paths (one for each of the six beams in most products).

Determine what variables are available

region_a.order_vars.avail will return a list of all valid path+variable strings.

region_a.order_vars.avail()

To increase readability, you can use built in functions to show the 200+ variable + path combinations as a dictio-
nary where the keys are variable names and the values are the paths to that variable. region_a.order_vars.
parse_var_list(region_a.order_vars.avail()) will return a dictionary of variable:paths key:value pairs.

region_a.order_vars.parse_var_list(region_a.order_vars.avail())

By passing the boolean options=True to the avail method, you can obtain lists of unique possible variable inputs
(var_list inputs) and path subdirectory inputs (keyword_list and beam_list inputs) for your data product. These can be
helpful for building your wanted variable list.

region_a.order_vars.avail(options=True)

Remember

You can run these same methods no matter how you created or accessed your ICESat-2 Variables. So the methods in
this section could be equivalently be accessed using a Read object, or by directly accessing a file on your computer:

Using a Read object
reader.vars.avail()
reader.vars.parse_var_list(reader.vars.avail())
reader.vars.avail(options=True)

Using a file on your computer
v = Variables(path='/my/file.h5')
v.avail()
v.parse_var_list(v.avail())
v.avail(options=True)

30 Chapter 6. ICESat-2’s Nested Variables

icepyx

6.3.2 Building your wanted variable list

Now that you know which variables and path components are available, you need to build a list of the ones you’d like
included. There are several options for generating your initial list as well as modifying it, giving the user complete
control.

The options for building your initial list are:

1. Use a default list for the product (not yet fully implemented across all products. Have a default variable list for
your field/product? Submit a pull request or post it as an issue on GitHub!)

2. Provide a list of variable names

3. Provide a list of profiles/beams or other path keywords, where “keywords” are simply the unique subdirectory
names contained in the full variable paths of the product. A full list of available keywords for the product is
displayed in the error message upon entering keyword_list=[''] into the append function (see below for an
example) or by running region_a.order_vars.avail(options=True), as above.

Note: all products have a short list of “mandatory” variables/paths (containing spacecraft orientation and time
information needed to convert the data’s delta_time to a readable datetime) that are automatically added to any
built list. If you have any recommendations for other variables that should always be included (e.g. uncertainty
information), please let us know!

Examples of using each method to build and modify your wanted variable list are below.

region_a.order_vars.wanted

region_a.order_vars.append(defaults=True)
pprint(region_a.order_vars.wanted)

The keywords available for this product are shown in the error message upon entering a blank keyword_list, as seen in
the next cell.

region_a.order_vars.append(keyword_list=[''])

6.3.3 Modifying your wanted variable list

Generating and modifying your variable request list, which is stored in region_a.order_vars.wanted, is controlled
by the append and remove functions that operate on region_a.order_vars.wanted. The input options to append
are as follows (the full documentation for this function can be found by executing help(region_a.order_vars.
append)).

• defaults (default False) - include the default variable list for your product (not yet fully implemented for all
products; please submit your default variable list for inclusion!)

• var_list (default None) - list of variables (entered as strings)

• beam_list (default None) - list of beams/profiles (entered as strings)

• keyword_list (default None) - list of keywords (entered as strings); use keyword_list=[''] to obtain a list
of available keywords

Similarly, the options for remove are:

• all (default False) - reset region_a.order_vars.wanted to None

• var_list (as above)

• beam_list (as above)

6.3. Interacting with ICESat-2 Data Variables 31

https://github.com/icesat2py/icepyx

icepyx

• keyword_list (as above)

region_a.order_vars.remove(all=True)
pprint(region_a.order_vars.wanted)

6.3.4 Examples (Overview)

Below are a series of examples to show how you can use append and remove to modify your wanted variable list.
For clarity, region_a.order_vars.wanted is cleared at the start of many examples. However, multiple append and
remove commands can be called in succession to build your wanted variable list (see Examples 3+).

There are two example tracks. The first is for land ice (ATL06) data that is separated into beams. The second is for
atmospheric data (ATL09) that is separated into profiles. Both example tracks showcase the same functionality and are
provided for users of both data types.

6.3.5 Example Track 1 (Land Ice - run with ATL06 dataset)

Example 1.1: choose variables

Add all latitude and longitude variables across all six beam groups. Note that the additional required variables
for time and spacecraft orientation are included by default.

region_a.order_vars.append(var_list=['latitude','longitude'])
pprint(region_a.order_vars.wanted)

Example 1.2: specify beams and variable

Add latitude for only gt1l and gt2l

region_a.order_vars.remove(all=True)
pprint(region_a.order_vars.wanted)

var_dict = region_a.order_vars.append(beam_list=['gt1l', 'gt2l'], var_list=['latitude'])
pprint(region_a.order_vars.wanted)

Example 1.3: add/remove selected beams+variables

Add latitude for gt3l and remove it for gt2l

region_a.order_vars.append(beam_list=['gt3l'],var_list=['latitude'])
region_a.order_vars.remove(beam_list=['gt2l'], var_list=['latitude'])
pprint(region_a.order_vars.wanted)

32 Chapter 6. ICESat-2’s Nested Variables

icepyx

Example 1.4: keyword_list

Add latitude and longitude for all beams and with keyword land_ice_segments

region_a.order_vars.append(var_list=['latitude', 'longitude'],keyword_list=['land_ice_
→˓segments'])
pprint(region_a.order_vars.wanted)

Example 1.5: target a specific variable + path

Remove gt1r/land_ice_segments/longitude (but keep gt1r/land_ice_segments/latitude)

region_a.order_vars.remove(beam_list=['gt1r'], var_list=['longitude'], keyword_list=[
→˓'land_ice_segments'])
pprint(region_a.order_vars.wanted)

Example 1.6: add variables not specific to beams/profiles

Add rgt under orbit_info.

region_a.order_vars.append(keyword_list=['orbit_info'],var_list=['rgt'])
pprint(region_a.order_vars.wanted)

Example 1.7: add all variables+paths of a group

In addition to adding specific variables and paths, we can filter all variables with a specific keyword as well. Here,
we add all variables under orbit_info. Note that paths already in region_a.order_vars.wanted, such as
'orbit_info/rgt', are not duplicated.

region_a.order_vars.append(keyword_list=['orbit_info'])
pprint(region_a.order_vars.wanted)

Example 1.8: add all possible values for variables+paths

Append all longitude paths and all variables/paths with keyword land_ice_segments.

Similarly to what is shown in Example 4, if you submit only one append call as region_a.order_vars.
append(var_list=['longitude'], keyword_list=['land_ice_segments']) rather than the two append
calls shown below, you will only add the variable longitude and only paths containing land_ice_segments, not
ALL paths for longitude and ANY variables with land_ice_segments in their path.

region_a.order_vars.append(var_list=['longitude'])
region_a.order_vars.append(keyword_list=['land_ice_segments'])
pprint(region_a.order_vars.wanted)

6.3. Interacting with ICESat-2 Data Variables 33

icepyx

Example 1.9: remove all variables+paths associated with a beam

Remove all paths for gt1l and gt3r

region_a.order_vars.remove(beam_list=['gt1l','gt3r'])
pprint(region_a.order_vars.wanted)

Example 1.10: generate a default list for the rest of the tutorial

Generate a reasonable variable list prior to download

region_a.order_vars.remove(all=True)
region_a.order_vars.append(defaults=True)
pprint(region_a.order_vars.wanted)

6.3.6 Example Track 2 (Atmosphere - run with ATL09 dataset commented out at the
start of the notebook)

Example 2.1: choose variables

Add all latitude and longitude variables

region_a.order_vars.append(var_list=['latitude','longitude'])
pprint(region_a.order_vars.wanted)

Example 2.2: specify beams/profiles and variable

Add latitude for only profile_1 and profile_2

region_a.order_vars.remove(all=True)
pprint(region_a.order_vars.wanted)

var_dict = region_a.order_vars.append(beam_list=['profile_1','profile_2'], var_list=[
→˓'latitude'])
pprint(region_a.order_vars.wanted)

Example 2.3: add/remove selected beams+variables

Add latitude for profile_3 and remove it for profile_2

region_a.order_vars.append(beam_list=['profile_3'],var_list=['latitude'])
region_a.order_vars.remove(beam_list=['profile_2'], var_list=['latitude'])
pprint(region_a.order_vars.wanted)

34 Chapter 6. ICESat-2’s Nested Variables

icepyx

Example 2.4: keyword_list

Add latitude for all profiles and with keyword low_rate

region_a.order_vars.append(var_list=['latitude'],keyword_list=['low_rate'])
pprint(region_a.order_vars.wanted)

Example 2.5: target a specific variable + path

Remove 'profile_1/high_rate/latitude' (but keep 'profile_3/high_rate/latitude')

region_a.order_vars.remove(beam_list=['profile_1'], var_list=['latitude'], keyword_list=[
→˓'high_rate'])
pprint(region_a.order_vars.wanted)

Example 2.6: add variables not specific to beams/profiles

Add rgt under orbit_info.

region_a.order_vars.append(keyword_list=['orbit_info'],var_list=['rgt'])
pprint(region_a.order_vars.wanted)

Example 2.7: add all variables+paths of a group

In addition to adding specific variables and paths, we can filter all variables with a specific keyword as well. Here,
we add all variables under orbit_info. Note that paths already in region_a.order_vars.wanted, such as
'orbit_info/rgt', are not duplicated.

region_a.order_vars.append(keyword_list=['orbit_info'])
pprint(region_a.order_vars.wanted)

Example 2.8: add all possible values for variables+paths

Append all longitude paths and all variables/paths with keyword high_rate. Simlarly to what is shown in Ex-
ample 4, if you submit only one append call as region_a.order_vars.append(var_list=['longitude'],
keyword_list=['high_rate']) rather than the two append calls shown below, you will only add the variable
longitude and only paths containing high_rate, not ALL paths for longitude and ANY variables with high_rate
in their path.

region_a.order_vars.append(var_list=['longitude'])
region_a.order_vars.append(keyword_list=['high_rate'])
pprint(region_a.order_vars.wanted)

6.3. Interacting with ICESat-2 Data Variables 35

icepyx

Example 2.9: remove all variables+paths associated with a profile

Remove all paths for profile_1 and profile_3

region_a.order_vars.remove(beam_list=['profile_1','profile_3'])
pprint(region_a.order_vars.wanted)

Example 2.10: generate a default list for the rest of the tutorial

Generate a reasonable variable list prior to download

region_a.order_vars.remove(all=True)
region_a.order_vars.append(defaults=True)
pprint(region_a.order_vars.wanted)

6.3.7 Using your wanted variable list

Now that you have your wanted variables list, you need to use it within your icepyx object (Query or Read) will
automatically use it.

With a Query object

In order to have your wanted variable list included with your order, you must pass it as a keyword argument to the
subsetparams() attribute or the order_granules() or download_granules() (which calls order_granules
under the hood if you have not already placed your order) functions.

region_a.subsetparams(Coverage=region_a.order_vars.wanted)

Or, you can put the Coverage parameter directly into order_granules: region_a.
order_granules(Coverage=region_a.order_vars.wanted)

However, then you cannot view your subset parameters (region_a.subsetparams) prior to submitting your order.

region_a.order_granules()# <-- you do not need to include the 'Coverage' kwarg to
order if you have already included it in a call to␣

→˓subsetparams

region_a.download_granules('/home/jovyan/icepyx/dev-notebooks/vardata') # <-- you do not␣
→˓need to include the 'Coverage' kwarg to

download if you have already submitted it with your order

With a Read object

Calling the load() method on your Read object will automatically look for your wanted variable list and use it. Please
see the read-in example Jupyter Notebook for a complete example of this usage.

36 Chapter 6. ICESat-2’s Nested Variables

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_read-in.html

icepyx

With a local filepath

One of the benefits of using a local filepath in variables is that it allows you to easily inspect the variables that are
available in your file. Once you have a variable of interest from the avail list, you could read that variable in with
another library, such as xarray. The example below demonstrates this assuming an ATL06 ICESat-2 file.

filepath = '/full/path/to/my/ATL06_file.h5'
v = ipx.Variables(path=filepath)
v.avail()
Browse paths and decide you need `gt1l/land_ice_segments/`

import xarray as xr

xr.open_dataset(filepath, group='gt1l/land_ice_segments/', engine='h5netcdf')

You’ll notice in this workflow you are limited to viewing data only within a particular group. Icepyx also provides
functionality for merging variables within or even across files. See the read-in example Jupyter Notebook for more
details about these features of icepyx.

Credits

• based on the subsetting notebook by: Jessica Scheick and Zheng Liu

6.3. Interacting with ICESat-2 Data Variables 37

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_read-in.html

icepyx

38 Chapter 6. ICESat-2’s Nested Variables

CHAPTER

SEVEN

VISUALIZING ICESAT-2 ELEVATIONS

This notebook (download) demonstrates interactive ICESat-2 elevation visualization by requesting data from OpenAl-
timetry based on metadata provided by icepyx. We will show how to plot spatial extent and elevation interactively.

Import packages

import icepyx as ipx

Create an ICESat-2 query object

Set the desired parameters for your data visualization.

For details on minimum required inputs, please refer to IS2_data_access. If you are using a spatial extent input other
than a bounding box for your search, it will automatically be converted to a bounding box for the purposes of visual-
ization ONLY (your query object will not be affected).

#bounding box
#Larsen C Ice Shelf
short_name = 'ATL06'
date_range = ['2020-7-1', '2020-8-1']
spatial_extent = [-67, -70, -59, -65]
cycles = ['03']
tracks = ['0948', '0872', '1184', '0186', '1123', '1009', '0445', '0369']

polygon vertices
short_name = 'ATL06'
date_range = ['2019-02-20','2019-02-28']
spatial_extent = [(-55, 68), (-55, 71), (-48, 71), (-48, 68), (-55, 68)]

polygon geospatial file
short_name = 'ATL06'
date_range = ['2019-10-01','2019-10-05']
spatial_extent = './supporting_files/data-access_PineIsland/glims_polygons.shp'

region = ipx.Query(short_name, spatial_extent, date_range)

print(region.product)
print(region.dates)
print(region.start_time)
print(region.end_time)
print(region.product_version)

(continues on next page)

39

https://www.openaltimetry.org/
https://www.openaltimetry.org/
https://icepyx.readthedocs.io/en/latest/
https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access.html

icepyx

(continued from previous page)

print(list(set(region.avail_granules(cycles=True)[0]))) #region.cycles
print(list(set(region.avail_granules(tracks=True)[0]))) #region.tracks

7.1 Visualize spatial extent

By calling function visualize_spatial_extent, it will plot the spatial extent in red outline overlaid on a basemap,
try zoom-in/zoom-out to see where is your interested region and what the geographic features look like in this region.

region.visualize_spatial_extent()

7.2 Visualize ICESat-2 elevation using OpenAltimetry API

Note: this function currently only supports products ATL06, ATL07, ATL08, ATL10, ATL12, ATL13

Now that we have produced an interactive map showing the spatial extent of ICESat-2 data to be requested from NSIDC
using icepyx, what if we want to have a quick check on the ICESat-2 elevations we plan to download from NSIDC?
OpenAltimetry API provides a nice way to achieve this. By sending metadata (product, date, bounding box, trackId)
of each ICESat-2 file to the API, it can return elevation data almost instantaneously. The major drawback is requests
are limited to 5x5 degree spatial bounding box selection for most of the ICESat-2 L3A products ATL06, ATL07,
ATL08, ATL10, ATL12, ATL13. To solve this issue, if you input spatial extent exceeds the 5 degree maximum in
either horizontal dimension, your input spatial extent will be splited into 5x5 degree lat/lon grids first, use icepyx to
query the metadata of ICESat-2 files located in each grid, and send each request to OpenAltimetry. Data sampling rates
are 1/50 for ATL06 and 1/20 for other products.

There are multiple ways to access icepyx’s visualization module. This option assumes you are visualizing the data
as part of a workflow that will result in a data download. Alternative options for accessing the OpenAltimetry-based
visualization module directly are provided at the end of this example.

cyclemap, rgtmap = region.visualize_elevation()
cyclemap

7.2.1 Plot elevation for individual RGT

The visualization tool also provides the option to view elevation data by latitude for each ground track.

rgtmap

7.2.2 Move on to data downloading from NSIDC if these are the products of interest

For more details on the data ordering and downloading process, see ICESat-2_DAAC_DataAccess_Example

region.order_granules()

#view a short list of order IDs
region.granules.orderIDs

(continues on next page)

40 Chapter 7. Visualizing ICESat-2 Elevations

https://openaltimetry.org/data/swagger-ui/#/
https://icesat-2.gsfc.nasa.gov/science/data-products
https://icesat-2.gsfc.nasa.gov/science/data-products
https://github.com/icesat2py/icepyx/blob/main/examples/ICESat-2_DAAC_DataAccess_Example.ipynb

icepyx

(continued from previous page)

path = 'your data directory'
region.download_granules(path)

Important Authentication Update

Previously, icepyx required you to explicitly use the .earthdata_login() function to login. Running this function
is deprecated and will result in an error, as icepyx will call the login function as needed. The user will still need to
provide their credentials.

7.2.3 Alternative Access Options to Visualize ICESat-2 elevation using OpenAltime-
try API

You can also view elevation data by importing the visualization module directly and initializing it with your query
object or a list of parameters:

from icepyx.core.visualization import Visualize

• passing your query object directly to the visualization module

region2 = ipx.Query(short_name, spatial_extent, date_range)
vis = Visualize(region2)

• creating a visualization object directly without first creating a query object

vis = Visualize(product=short_name, spatial_extent=spatial_extent, date_range=date_range)

Credits

• Notebook by: Tian Li, Jessica Scheick and Wei Ji

• Source material: READ_ATL06_DEM Notebook by Tian Li and Friedrich Knuth

7.2. Visualize ICESat-2 elevation using OpenAltimetry API 41

https://github.com/icetianli
https://github.com/JessicaS11
https://github.com/weiji14
https://github.com/ICESAT-2HackWeek/Assimilation/blob/master/contributors/icetianli/READ_ATL06_DEM.ipynb
https://github.com/friedrichknuth

icepyx

42 Chapter 7. Visualizing ICESat-2 Elevations

CHAPTER

EIGHT

READING ICESAT-2 DATA IN FOR ANALYSIS

This notebook (download) illustrates the use of icepyx for reading ICESat-2 data files, loading them into a data object.
Currently the default data object is an Xarray Dataset, with ongoing work to provide support for other data object types.

For more information on how to order and download ICESat-2 data, see the icepyx data access tutorial.

8.1 Motivation

Most often, when you open a data file, you must specify the underlying data structure and how you’d like the information
to be read in. A simple example of this, for instance when opening a csv or similarly delimited file, is letting the software
know if the data contains a header row, what the data type is (string, double, float, boolean, etc.) for each column, what
the delimeter is, and which columns or rows you’d like to be loaded. Many ICESat-2 data readers are quite manual in
nature, requiring that you accurately type out a list of string paths to the various data variables.

icepyx simplifies this process by relying on its awareness of ICESat-2 specific data file variable storage structure.
Instead of needing to manually iterate through the beam pairs, you can provide a few options to the Read object and
icepyx will do the heavy lifting for you (as detailed in this notebook).

8.2 Approach

If you’re interested in what’s happening under the hood: icepyx uses the xarray library to read in each of the requested
variables of the dataset. icepyx formats each requested variable and then merges the read-in data from each of the
variables to create a single data object. The use of xarray is powerful, because the returned data object can be used
with relevant xarray processing tools.

Import packages, including icepyx

import icepyx as ipx

43

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access.html
https://docs.xarray.dev/en/stable/

icepyx

8.3 Quick-Start Guide

For those who might be looking into playing with this (but don’t want all the details/explanations)

path_root = '/full/path/to/your/ATL06_data/'
reader = ipx.Read(path_root)

reader.vars.append(beam_list=['gt1l', 'gt3r'], var_list=['h_li', "latitude", "longitude
→˓"])

ds = reader.load()
ds

ds.plot.scatter(x="longitude", y="latitude", hue="h_li", vmin=-100, vmax=2000)

8.4 Key steps for loading (reading) ICESat-2 data

Reading in ICESat-2 data with icepyx happens in a few simple steps:

1. Let icepyx know where to find your data (this might be local files or urls to data in cloud storage)

2. Create an icepyx Read object

3. Make a list of the variables you want to read in (does not apply for gridded products)

4. Load your data into memory (or read it in lazily, if you’re using Dask)

We go through each of these steps in more detail in this notebook.

8.4.1 Step 0: Get some data if you haven’t already

Here are a few lines of code to get you set up with a few data files if you don’t already have some on your local system.

region_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-22','2019-02-28'], \
start_time='00:00:00', end_time='23:59:59')

region_a.download_granules(path=path_root)

Important Authentication Update

Previously, icepyx required you to explicitly use the .earthdata_login() function to login. Running this function
is deprecated and will result in an error, as icepyx will call the login function as needed. The user will still need to
provide their credentials.

44 Chapter 8. Reading ICESat-2 Data in for Analysis

icepyx

8.4.2 Step 1: Set data source path

Provide a full path to the data to be read in (i.e. opened). Currently accepted inputs are:

• a string path to directory - all files from the directory will be opened

• a string path to single file - one file will be opened

• a list of filepaths - all files in the list will be opened

• a glob string (see glob) - any files matching the glob pattern will be opened

path_root = '/full/path/to/your/data/'

filepath = path_root + 'ATL06-20181214041627-Sample.h5'

list_of_files = ['/my/data/ATL06/processed_ATL06_20190226005526_09100205_006_02.h5',
'/my/other/data/ATL06/processed_ATL06_20191202102922_10160505_006_01.h5
→˓']

Glob Strings

glob is a Python library which allows users to list files in their file systems whose paths match a given pattern. Icepyx
uses the glob library to give users greater flexibility over their input file lists.

glob works using * and ? as wildcard characters, where * matches any number of characters and ? matches a single
character. For example:

• /this/path/*.h5: refers to all .h5 files in the /this/path folder (Example matches:
“/this/path/processed_ATL03_20191130221008_09930503_006_01.h5” or “/this/path/myfavoriteicsat-
2file.h5”)

• /this/path/*ATL07*.h5: refers to all .h5 files in the /this/path folder that have ATL07 in
the filename. (Example matches: “/this/path/ATL07-02_20221012220720_03391701_005_01.h5” or
“/this/path/processed_ATL07.h5”)

• /this/path/ATL??/*.h5: refers to all .h5 files that are in a subfolder of /
this/path and a subdirectory of ATL followed by any 2 characters (Example
matches: “/this/path/ATL03/processed_ATL03_20191130221008_09930503_006_01.h5”,
“/this/path/ATL06/myfile.h5”)

See the glob documentation or other online explainer tutorials for more in depth explanation, or advanced glob paths
such as character classes and ranges.

Recursive Directory Search

glob will not by default search all of the subdirectories for matching filepaths, but it has the ability to do so.

If you would like to search recursively, you can achieve this by either:

1. passing the recursive argument into glob_kwargs and including **\ in your filepath

2. using glob directly to create a list of filepaths

Each of these two methods are shown below.

Method 1: passing the recursive argument into glob_kwargs

8.4. Key steps for loading (reading) ICESat-2 data 45

https://docs.python.org/3/library/glob.html
https://docs.python.org/3/library/glob.html

icepyx

ipx.Read('/path/to/**/folder', glob_kwargs={'recursive': True})

You can use glob_kwargs for any additional argument to Python’s builtin glob.glob that you would like to pass in
via icepyx.

Method 2: using glob directly to create a list of filepaths

import glob

list_of_files = glob.glob('/path/to/**/folder', recursive=True)
ipx.Read(list_of_files)

Read Module Update

Previously, icepyx required two additional conditions: 1) a product argument and 2) that your files either matched
the default filename_pattern or that the user provided their own filename_pattern. These two requirements
have been removed. product is now read directly from the file metadata (the root group’s short_name attribute).
Flexibility to specify multiple files via the filename_pattern has been replaced with the glob string feature, and by
allowing a list of filepaths as an argument.

The product and filename_pattern arguments are now deprecated and were removed in icepyx version 1.0.0.

8.4.3 Step 2: Create an icepyx read object

Using the data_source described in Step 1, we can create our Read object.

reader = ipx.Read(data_source=path_root)

The Read object now contains the list of matching files that will eventually be loaded into Python. You can inspect its
properties, such as the files that were located or the identified product, directly on the Read object.

reader.filelist

reader.product

8.4.4 Step 3: Specify variables to be read in

To load your data into memory or prepare it for analysis, icepyx needs to know which variables you’d like to read in. If
you’ve used icepyx to download data from NSIDC with variable subsetting (which is the default), then you may already
be familiar with the icepyx Variables module and how to create and modify lists of variables. We showcase a specific
case here, but we encourage you to check out the icepyx Variables example for a thorough trip through how to create
and manipulate lists of ICESat-2 variable paths (examples are provided for multiple data products).

If you want to see a [likely very long] list of all path + variable combinations available to you, this unmutable (un-
changeable) list is generated by default from the first file in your list (so not all variables may be contained in all of the
files, depending on how you are accessing the data).

reader.vars.avail()

To make things easier, you can use icepyx’s built-in default list that loads commonly used variables for your non-gridded
data product, or create your own list of variables to be read in. icepyx will determine what variables are available for

46 Chapter 8. Reading ICESat-2 Data in for Analysis

https://docs.python.org/3/library/glob.html
https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_variables.html

icepyx

you to read in by creating a list from one of your source files. If you have multiple files that you’re reading in, icepyx
will automatically generate a list of filenames and take the first one to get the list of available variables.

Thus, if you have different variables available across files (even from the same data product), you may run into issues
and need to come up with a workaround (we can help you do so!). We anticipate most users will have the minimum
set of variables they are seeking to load available across all data files, so we’re not currently developing this feature.
Please get in touch if it would be a helpful feature for you or if you encounter this problem!

You may create a variable list for gridded ICESat-2 products. However, all variables in the file will still be added to
your DataSet. (This is an area we’re currently exploring on expanding - please let us know if you’re working on this
and would like to contribute!)

For a basic case, let’s say we want to read in height, latitude, and longitude for all beam pairs. We create our variables
list as

reader.vars.append(var_list=['h_li', "latitude", "longitude"])

Then we can view a dictionary of the variables we’d like to read in.

reader.vars.wanted

Don’t forget - if you need to start over, and re-generate your wanted variables list, it’s easy!

reader.vars.remove(all=True)

8.4.5 Step 4: Loading your data

Now that you’ve set up all the options, you’re ready to read your ICESat-2 data into memory!

ds = reader.load()

Within a Jupyter Notebook, you can get a summary view of your data object.

ATTENTION: icepyx loads your data by creating an Xarray DataSet for each input granule and then merging them.
In some cases, the automatic merge fails and needs to be handled manually. In these cases, icepyx will return a
warning with the error message from the failed Xarray merge and a list of per-granule DataSets

This can happen if you unintentionally provide the same granule multiple times with different filenames or in segmented
products where the rgt+cycle automatically generated gran_idx values match. In this latter case, you can simply
provide unique gran_idx values for each DataSet in ds and run import xarray as xr and ds_merged = xr.
merge(ds) to create one merged DataSet.

ds

8.5 On to data analysis!

From here, you can begin your analysis. Ultimately, icepyx aims to include an Xarray extension with ICESat-2 aware
functions that allow you to do things like easily use only data from strong beams. That functionality is still in develop-
ment. For fun, we’ve included a basic plot made with Xarray’s built in functionality.

ds.plot.scatter(x="longitude", y="latitude", hue="h_li", vmin=-100, vmax=2000)

A developer note to users: our next steps will be to create an xarray extension with ICESat-2 aware functions (like
“get_strong_beams”, etc.). Please let us know if you have any ideas or already have functions developed (we can work
with you to add them, or add them for you!).

8.5. On to data analysis! 47

icepyx

8.5.1 Credits

• original notebook by: Jessica Scheick

• notebook contributors: Wei Ji and Tian

48 Chapter 8. Reading ICESat-2 Data in for Analysis

CHAPTER

NINE

ICESAT-2 AWS CLOUD DATA ACCESS

This notebook (download) illustrates the use of icepyx for accessing ICESat-2 data currently available through the
AWS (Amazon Web Services) us-west2 hub s3 data bucket.

9.1 Notes

1. ICESat-2 data became publicly available on the cloud on 29 September 2022. Thus, access methods and example
workflows are still being developed by NSIDC, and the underlying code in icepyx will need to be updated now
that these data (and the associated metadata) are available. We appreciate your patience and contributions (e.g.
reporting bugs, sharing your code, etc.) during this transition!

2. This example and the code it describes are part of ongoing development. Current limitations to using these
features are described throughout the example, as appropriate.

3. You MUST be working within an AWS instance. Otherwise, you will get a permissions error.

9.2 Querying for data and finding s3 urls

import icepyx as ipx

Make sure the user sees important warnings if they try to read a lot of data from the␣
→˓cloud
import warnings
warnings.filterwarnings("always")

We will start the way we often do: by creating an icepyx Query object.

short_name = 'ATL03'
spatial_extent = [-45, 58, -35, 75]
date_range = ['2019-11-30','2019-11-30']

reg = ipx.Query(short_name, spatial_extent, date_range)

49

icepyx

9.2.1 Get the granule s3 urls

With this query object you can get a list of available granules. This function returns a list containing the list of the
granule IDs and a list of the corresponding urls. Use cloud=True to get the needed s3 urls.

gran_ids = reg.avail_granules(ids=True, cloud=True)
gran_ids

9.3 Determining variables of interest

There are several ways to view available variables. One is to use the existing Query object:

reg.order_vars.avail()

Another way is to use the variables module:

ipx.Variables(product=short_name).avail()

We can also do this using a specific s3 filepath from the Query object:

ipx.Variables(path=gran_ids[1][0]).avail()

From any of these methods we can see that h_ph is a variable for this data product, so we will read that variable in the
next step.

9.3.1 A Note on listing variables using s3 urls

We can use the Variables module with an s3 url to explore available data variables the same way we do with local files.
An important difference, however, is how the available variables list is created. When reading a local file the variables
module will traverse the entire file and search for variables that are present in that file. This method it too time intensive
with the s3 data, so instead the the product / version of the data product is read from the file and all possible variables
associated with that product/version are reporting as available. As long as you are using the NSIDC provided s3 paths
provided via Earthdata search and the Query object these lists will be the same.

9.3.2 A Note on authentication

Notice that accessing cloud data requires two layers of authentication: 1) authenticating with your Earthdata Login 2)
authenticating for cloud access. These both happen behind the scenes, without the need for users to provide any explicit
commands.

Icepyx uses earthaccess to generate your s3 data access token, which will be valid for one hour. Icepyx will also renew
the token for you after an hour, so if viewing your token over the course of several hours you may notice the values will
change.

If you do want to see your s3 credentials, you can access them using:

uncommenting the line below will print your temporary aws login credentials
reg.s3login_credentials

Important Authentication Update

50 Chapter 9. ICESat-2 AWS cloud data access

icepyx

Previously, icepyx required you to explicitly use the .earthdata_login() function to login. Running this function
is deprecated and will result in an error, as icepyx will call the login function as needed. The user will still need to
provide their credentials.

9.4 Choose a data file and access the data

Note: If you get a PermissionDenied Error when trying to read in the data, you may not be sending your request
from an AWS hub in us-west2. We’re currently working on how to alert users if they will not be able to access
ICESat-2 data in the cloud for this reason

We are ready to read our data! We do this by creating a reader object and using the s3 url returned from the Query
object.

the first index, [1], gets us into the list of s3 urls
the second index, [0], gets us the first entry in that list.
s3url = gran_ids[1][0]
s3url = 's3://nsidc-cumulus-prod-protected/ATLAS/ATL03/004/2019/11/30/ATL03_
→˓20191130221008_09930503_004_01.h5'

Create the Read object

reader = ipx.Read(s3url)

This reader object gives us yet another way to view available variables.

reader.vars.avail()

Next, we append our desired variable to the wanted_vars list:

reader.vars.append(var_list=['h_ph'])

Finally, we load the data

%%time

This may take 5-10 minutes
reader.load()

9.4.1 Some important caveats

While the cloud data reading is functional within icepyx, it is very slow. Approximate timing shows it takes ~6 minutes
of load time per variable per file from s3. Because of this you will recieve a warning if you try to load either more than
three variables or two files at once.

The slow load speed is a demonstration of the many steps involved in making cloud data actionable - the data supply
chain needs optimized source data, efficient low level data readers, and high level libraries which are enabled to use the
fastest low level data readers. Not all of these pieces fully developed right now, but the progress being made it exciting
and there is lots of room for contribution!

9.4. Choose a data file and access the data 51

icepyx

Credits

• notebook by: Jessica Scheick and Rachel Wegener

52 Chapter 9. ICESat-2 AWS cloud data access

CHAPTER

TEN

QUEST EXAMPLE: FINDING ARGO AND ICESAT-2 DATA

In this notebook, we are going to find Argo and ICESat-2 data over a region of the Pacific Ocean. Normally, we would
require multiple data portals or Python packages to accomplish this. However, thanks to the QUEST (Query, Unify,
Explore SpatioTemporal) module, we can use icepyx to find both!

Basic packages
import geopandas as gpd
import matplotlib.pyplot as plt
import numpy as np
from pprint import pprint

icepyx and QUEST
import icepyx as ipx

10.1 Define the Quest Object

QUEST builds off of the general querying process originally designed for ICESat-2, but makes it applicable to other
datasets.

Just like the ICESat-2 Query object, we begin by defining our Quest object. We provide the following bounding
parameters:

• spatial_extent: Data is constrained to the given box over the Pacific Ocean.

• date_range: Only grab data from April 18-19, 2022 (to keep download sizes small for this example).

Spatial bounds, given as SW/NE corners
spatial_extent = [-154, 30, -143, 37]

Start and end dates, in YYYY-MM-DD format
date_range = ['2022-04-18', '2022-04-19']

Initialize the QUEST object
reg_a = ipx.Quest(spatial_extent=spatial_extent, date_range=date_range)

print(reg_a)

Notice that we have defined our spatial and temporal domains, but we do not have any datasets in our QUEST object.
The next section leads us through that process.

53

https://icepyx.readthedocs.io/en/latest/contributing/quest-available-datasets.html
https://icepyx.readthedocs.io/en/latest/contributing/quest-available-datasets.html

icepyx

10.2 Getting the data

Let’s first query the ICESat-2 data. If we want to extract information about the water column, the ATL03 product is
likely the desired choice.

• short_name: ATL03

ICESat-2 product
short_name = 'ATL03'

Add ICESat-2 to QUEST datasets
reg_a.add_icesat2(product=short_name)
print(reg_a)

Let’s see the available files over this region.

pprint(reg_a.datasets['icesat2'].avail_granules(ids=True))

Note the ICESat-2 functions shown here are the same as those used for direct icepyx queries. The user is referred to
other example workbooks for detailed explanations about icepyx functionality.

Accessing ICESat-2 data requires Earthdata login credentials. When running the download_all() function below,
an authentication check will be passed when attempting to download the ICESat-2 files.

Now let’s grab Argo data using the same constraints. This is as simple as using the below function.

Add argo to the desired QUEST datasets
reg_a.add_argo()

When accessing Argo data, the variables of interest will be organized as vertical profiles as a function of pressure. By
default, only temperature is queried, so the user should supply a list of desired parameters using the code below. The
user may also limit the pressure range of the returned data by passing presRange="0,200".

Note: Our example shows only physical Argo float parameters, but the process is identical for including BGC float
parameters.

Customized variable query to retrieve salinity instead of temperature
reg_a.add_argo(params=['salinity'])

Additionally, a user may view or update the list of requested Argo and Argo-BGC parameters at any time through
reg_a.datasets['argo'].params. If a user submits an invalid parameter (“temp” instead of “temperature”, for
example), an AssertionError will be raised. reg_a.datasets['argo'].presRange behaves anologously for
limiting the pressure range of Argo data.

update the list of argo parameters
reg_a.datasets['argo'].params = ['temperature','salinity']

show the current list
reg_a.datasets['argo'].params

As for ICESat-2 data, the user can interact directly with the Argo data object (reg_a.datasets['argo']) to search
or download data outside of the Quest.search_all() and Quest.download_all() functionality shown below.

The approach to directly search or download Argo data is to use reg_a.datasets['argo'].search_data(), and
reg_a.datasets['argo'].download(). In both cases, the existing parameters and pressure ranges are used unless
the user passes new params and/or presRange kwargs, respectively, which will directly update those values (stored
attributes).

54 Chapter 10. QUEST Example: Finding Argo and ICESat-2 data

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access.html

icepyx

With our current setup, let’s see what Argo parameters we will get.

see what argo parameters will be searched for or downloaded
reg_a.datasets['argo'].params

reg_a.datasets['argo'].search_data()

Now we can access the data for both Argo and ICESat-2! The below function will do this for us.

Important: The Argo data will be compiled into a Pandas DataFrame, which must be manually saved by the user as
demonstrated below. The ICESat-2 data is saved as processed HDF-5 files to the directory provided.

path = './quest/downloaded-data/'

Access Argo and ICESat-2 data simultaneously
reg_a.download_all(path=path)

We now have one available Argo profile, containing temperature and pressure, in a Pandas DataFrame. BGC Argo
is also available through QUEST, so we could add more variables to this list.

If the user wishes to add more profiles, parameters, and/or pressure ranges to a pre-existing DataFrame, then they should
use reg_a.datasets['argo'].download(keep_existing=True) to retain previously downloaded data and have
the new data added.

The reg_a.download_all() function also provided a file containing ICESat-2 ATL03 data. Recall that because these
data files are very large, we focus on only one file for this example.

The below workflow uses the icepyx Read module to quickly load ICESat-2 data into an Xarray DataSet. To read in
multiple files, see the icepyx Read tutorial for how to change your input source.

filename = 'processed_ATL03_20220419002753_04111506_006_02.h5'

reader = ipx.Read(data_source=path+filename)

decide which portions of the file to read in
reader.vars.append(beam_list=['gt2l'],

var_list=['h_ph', "lat_ph", "lon_ph", 'signal_conf_ph'])

ds = reader.load()
ds

To make the data more easily plottable, let’s convert the data into a Pandas DataFrame. Note that this method is memory-
intensive for ATL03 data, so users are suggested to look at small spatial domains to prevent the notebook from crashing.
Here, since we only have data from one granule and ground track, we have sped up the conversion to a dataframe by
first removing extra data dimensions we don’t need for our plots. Several of the other steps completed below using
Pandas have analogous operations in Xarray that would further reduce memory requirements and computation times.

is2_pd =(ds.squeeze()
.reset_coords()
.drop_vars(["source_file","data_start_utc","data_end_utc","gran_idx"])
.to_dataframe()
)

is2_pd

10.2. Getting the data 55

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_read-in.html

icepyx

Create a new dataframe with only "ocean" photons, as indicated by the "ds_surf_type"␣
→˓flag
is2_pd = is2_pd.reset_index(level=[0,1])
is2_pd_ocean = is2_pd[is2_pd.ds_surf_type==1].drop(columns="photon_idx")
is2_pd_ocean

Set Argo data as its own DataFrame
argo_df = reg_a.datasets['argo'].argodata

Convert both DataFrames into GeoDataFrames
is2_gdf = gpd.GeoDataFrame(is2_pd_ocean,

geometry=gpd.points_from_xy(is2_pd_ocean['lon_ph'], is2_pd_
→˓ocean['lat_ph']),

crs='EPSG:4326'
)
argo_gdf = gpd.GeoDataFrame(argo_df,

geometry=gpd.points_from_xy(argo_df.lon, argo_df.lat),
crs='EPSG:4326'

)

To view the relative locations of ICESat-2 and Argo, the below cell uses the explore() function from GeoPandas.
The time variables cause errors in the function, so we will drop those variables first.

Note that for large datasets like ICESat-2, loading the map might take a while.

Drop time variables that would cause errors in explore() function
is2_gdf = is2_gdf.drop(['delta_time','atlas_sdp_gps_epoch'], axis=1)

Plot ICESat-2 track (medium/high confidence photons only) on a map
m = is2_gdf[is2_gdf['signal_conf_ph']>=3].explore(column='rgt', tiles='Esri.WorldImagery
→˓',

name='ICESat-2')

Add Argo float locations to map
argo_gdf.explore(m=m, name='Argo', marker_kwds={"radius": 6}, color='red')

While we’re at it, let’s plot temperature and pressure profiles for each of the Argo floats in the area.

Plot vertical profile of temperature vs. pressure for all of the floats
fig, ax = plt.subplots(figsize=(12, 6))
for pid in np.unique(argo_df['profile_id']):

argo_df[argo_df['profile_id']==pid].plot(ax=ax, x='temperature', y='pressure',␣
→˓label=pid)
plt.gca().invert_yaxis()
plt.xlabel('Temperature [\degreeC]')
plt.ylabel('Pressure [hPa]')
plt.ylim([750, -10])
plt.tight_layout()

Lastly, let’s look at some near-coincident ICESat-2 and Argo data in a multi-panel plot.

Only consider ICESat-2 signal photons
is2_pd_signal = is2_pd_ocean[is2_pd_ocean['signal_conf_ph']>=0]

(continues on next page)

56 Chapter 10. QUEST Example: Finding Argo and ICESat-2 data

icepyx

(continued from previous page)

Multi-panel plot showing ICESat-2 and Argo data

Calculate Extent
lons = [-154, -143, -143, -154, -154]
lats = [30, 30, 37, 37, 30]
lon_margin = (max(lons) - min(lons)) * 0.1
lat_margin = (max(lats) - min(lats)) * 0.1

Create Plot
fig,([ax1,ax2],[ax3,ax4]) = plt.subplots(2, 2, figsize=(12, 6))

Plot Relative Global View
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
world.plot(ax=ax1, color='0.8', edgecolor='black')
argo_df.plot.scatter(ax=ax1, x='lon', y='lat', s=25.0, c='green', zorder=3, alpha=0.3)
is2_pd_signal.plot.scatter(ax=ax1, x='lon_ph', y='lat_ph', s=10.0, zorder=2, alpha=0.3)
ax1.plot(lons, lats, linewidth=1.5, color='orange', zorder=2)
ax1.set_xlim(-160,-100)
ax1.set_ylim(20,50)
ax1.set_aspect('equal', adjustable='box')
ax1.set_xlabel('Longitude', fontsize=18)
ax1.set_ylabel('Latitude', fontsize=18)

Plot Zoomed View of Ground Tracks
argo_df.plot.scatter(ax=ax2, x='lon', y='lat', s=50.0, c='green', zorder=3, alpha=0.3)
is2_pd_signal.plot.scatter(ax=ax2, x='lon_ph', y='lat_ph', s=10.0, zorder=2, alpha=0.3)
ax2.plot(lons, lats, linewidth=1.5, color='orange', zorder=1)
ax2.set_xlim(min(lons) - lon_margin, max(lons) + lon_margin)
ax2.set_ylim(min(lats) - lat_margin, max(lats) + lat_margin)
ax2.set_aspect('equal', adjustable='box')
ax2.set_xlabel('Longitude', fontsize=18)
ax2.set_ylabel('Latitude', fontsize=18)

Plot ICESat-2 along-track vertical profile. A dotted line notes the location of a␣
→˓nearby Argo float
is2 = ax3.scatter(is2_pd_signal['lat_ph'], is2_pd_signal['h_ph']+13.1, s=0.1)
ax3.axvline(34.43885, linestyle='--', linewidth=3, color='black')
ax3.set_xlim([34.3, 34.5])
ax3.set_ylim([-20, 5])
ax3.set_xlabel('Latitude', fontsize=18)
ax3.set_ylabel('Approx. IS-2 Depth [m]', fontsize=16)
ax3.set_yticklabels(['15', '10', '5', '0', '-5'])

Plot vertical ocean profile of the nearby Argo float
argo_df.plot(ax=ax4, x='temperature', y='pressure', linewidth=3)
ax4.set_yscale('log')
ax4.invert_yaxis()
ax4.get_legend().remove()
ax4.set_xlabel('Temperature [\degreeC]', fontsize=18)
ax4.set_ylabel('Argo Pressure', fontsize=16)

(continues on next page)

10.2. Getting the data 57

icepyx

(continued from previous page)

plt.tight_layout()

Save figure
#plt.savefig('/icepyx/quest/figures/is2_argo_figure.png', dpi=500)

Recall that the Argo data must be saved manually. The dataframe associated with the Quest object can be saved using
reg_a.save_all(path)

reg_a.save_all(path)

58 Chapter 10. QUEST Example: Finding Argo and ICESat-2 data

CHAPTER

ELEVEN

ICEPYX DOCUMENTATION (API REFERENCE)

icepyx package diagram illustrating the library’s public-facing, high-level package structure and their relationships.

icepyx class diagram illustrating the library’s public-facing classes, their attributes and methods, and their relationships.
A more detailed, developer UML class diagram showing hidden parameters is available on GitHub in the icepyx/doc/
source/user_guide/documentation/ directory. Diagrams are updated automatically after a pull request (PR) is
approved and before it is merged to the development branch.

11.1 Query Class

11.1.1 Constructors

GenQuery([spatial_extent, date_range, ...]) Base class for querying data.
Query([product, spatial_extent, date_range, ...]) Query and get ICESat-2 data

icepyx.GenQuery

class icepyx.GenQuery(spatial_extent=None, date_range=None, start_time=None, end_time=None, **kwargs)
Base class for querying data.

Generic components of query object that specifically handles spatio-temporal constraints applicable to all
datasets. Extended by Query (ICESat-2) and Quest (other products).

Parameters

spatial_extent
[list of coordinates or string (i.e. file name)] Spatial extent of interest, provided as a bound-
ing box, list of polygon coordinates, or geospatial polygon file. NOTE: Longitude values
are assumed to be in the range -180 to +180, with 0 being the Prime Meridian (Green-
wich). See xdateline for regions crossing the date line. You can submit at most one bounding
box or list of polygon coordinates. Per NSIDC requirements, geospatial polygon files may
only contain one feature (polygon). Bounding box coordinates should be provided in deci-
mal degrees as [lower-left-longitude, lower-left-latitute, upper-right-longitude, upper-right-
latitude]. Polygon coordinates should be provided as coordinate pairs in decimal degrees
as [(longitude1, latitude1), (longitude2, latitude2), . . . (longitude_n,latitude_n), (longi-
tude1,latitude1)] or [longitude1, latitude1, longitude2, latitude2, . . . longitude_n,latitude_n,
longitude1,latitude1]. Your list must contain at least four points, where the first and last are

59

icepyx

identical. Geospatial polygon files are entered as strings with the full file path and must con-
tain only one polygon with the area of interest. Currently supported formats are: kml, shp,
and gpkg

date_range
[list or dict, as follows] Date range of interest, provided as start and end dates, inclusive.
Accepted input date formats are:

• YYYY-MM-DD string

• YYYY-DOY string

• datetime.date object (if times are included)

• datetime.datetime objects (if no times are included)

where YYYY = 4 digit year, MM = 2 digit month, DD = 2 digit day, DOY = 3 digit day
of year. Date inputs are accepted as a list or dictionary with start_date and end_date keys.
Currently, a list of specific dates (rather than a range) is not accepted. TODO: allow searches
with a list of dates, rather than a range.

start_time
[str, datetime.time, default None] Start time in UTC/Zulu (24 hour clock). Input types are an
HH:mm:ss string or datetime.time object where HH = hours, mm = minutes, ss = seconds.
If None is given (and a datetime.datetime object is not supplied for date_range), a default of
00:00:00 is applied.

end_time
[str, datetime.time, default None] End time in UTC/Zulu (24 hour clock). Input types are an
HH:mm:ss string or datetime.time object where HH = hours, mm = minutes, ss = seconds.
If None is given (and a datetime.datetime object is not supplied for date_range), a default of
23:59:59 is applied. If a datetime.datetime object was created without times, the datetime
package defaults will apply over those of icepyx

xdateline
[boolean, default None] Keyword argument to enforce spatial inputs that cross the Interna-
tional Date Line. Internally, this will translate your longitudes to 0 to 360 to construct the
correct, valid Shapely geometry.

WARNING: This will allow your request to be properly submitted and visualized. However,
this flag WILL NOT automatically correct for incorrectly ordered spatial inputs.

See also:

Query
Quest

Examples

Initializing Query with a bounding box

>>> reg_a_bbox = [-55, 68, -48, 71]
>>> reg_a_dates = ['2019-02-20','2019-02-28']
>>> reg_a = GenQuery(reg_a_bbox, reg_a_dates)
>>> print(reg_a)
Extent type: bounding_box
Coordinates: [-55.0, 68.0, -48.0, 71.0]
Date range: (2019-02-20 00:00:00, 2019-02-28 23:59:59)

60 Chapter 11. icepyx Documentation (API Reference)

icepyx

Initializing Query with a list of polygon vertex coordinate pairs.

>>> reg_a_poly = [(-55, 68), (-55, 71), (-48, 71), (-48, 68), (-55, 68)]
>>> reg_a_dates = ['2019-02-20','2019-02-28']
>>> reg_a = GenQuery(reg_a_poly, reg_a_dates)
>>> print(reg_a)
Extent type: polygon
Coordinates: [-55.0, 68.0, -55.0, 71.0, -48.0, 71.0, -48.0, 68.0, -55.0, 68.0]
Date range: (2019-02-20 00:00:00, 2019-02-28 23:59:59)

Initializing Query with a geospatial polygon file.

>>> aoi = str(Path('./doc/source/example_notebooks/supporting_files/simple_test_
→˓poly.gpkg').resolve())
>>> reg_a_dates = ['2019-02-22','2019-02-28']
>>> reg_a = GenQuery(aoi, reg_a_dates)
>>> print(reg_a)
Extent type: polygon
Coordinates: [-55.0, 68.0, -55.0, 71.0, -48.0, 71.0, -48.0, 68.0, -55.0, 68.0]
Date range: (2019-02-22 00:00:00, 2019-02-28 23:59:59)

__init__(spatial_extent=None, date_range=None, start_time=None, end_time=None, **kwargs)

Methods

__init__([spatial_extent, date_range, ...])

Attributes

dates Return an array showing the date range of the query
object.

end_time Return the end time specified for the end date.
spatial Return the spatial object, which provides the un-

derlying functionality for validating and formatting
geospatial objects.

spatial_extent Return an array showing the spatial extent of the
query object. Spatial extent is returned as an in-
put type (which depends on how you initially en-
tered your spatial data) followed by the geometry
data. Bounding box data is [lower-left-longitude,
lower-left-latitute, ... upper-right-longitude, upper-
right-latitude]. Polygon data is [longitude1, latitude1,
longitude2, latitude2, ... longitude_n,latitude_n, lon-
gitude1,latitude1].

start_time Return the start time specified for the start date.
temporal Return the Temporal object containing date/time

range information for the query object.

11.1. Query Class 61

icepyx

icepyx.Query

class icepyx.Query(product=None, spatial_extent=None, date_range=None, start_time=None, end_time=None,
version=None, cycles=None, tracks=None, auth=None, **kwargs)

Query and get ICESat-2 data

ICESat-2 Data object to query, obtain, and perform basic operations on available ICESat-2 data products using
temporal and spatial input parameters. Allows the easy input and formatting of search parameters to match the
NASA NSIDC DAAC and (development goal-not yet implemented) conversion to multiple data types. Expands
the superclass GenQuery.

See the doc page for GenQuery for details on temporal and spatial input parameters.

Parameters

product
[string] ICESat-2 data product ID, also known as “short name” (e.g. ATL03). Available data
products can be found at: https://nsidc.org/data/icesat-2/data-sets

version
[string, default most recent version] Product version, given as a 3 digit string. If no version
is given, the current version is used. Example: “006”

cycles
[string or a list of strings, default all available orbital cycles] Product cycle, given as a 2 digit
string. If no cycle is given, all available cycles are used. Example: “04”

tracks
[string or a list of strings, default all available reference ground tracks (RGTs)] Product track,
given as a 4 digit string. If no track is given, all available reference ground tracks are used.
Example: “0594”

auth
[earthaccess.auth.Auth, default None] An earthaccess authentication object. Available as an
argument so an existing earthaccess.auth.Auth object can be used for authentication. If not
given, a new auth object will be created whenever authentication is needed.

Returns

query object

See also:

GenQuery

Examples

Initializing Query with a bounding box.

>>> reg_a_bbox = [-55, 68, -48, 71]
>>> reg_a_dates = ['2019-02-20','2019-02-28']
>>> reg_a = Query('ATL06', reg_a_bbox, reg_a_dates)
>>> print(reg_a)
Product ATL06 v006
('bounding_box', [-55.0, 68.0, -48.0, 71.0])
Date range ['2019-02-20', '2019-02-28']

Initializing Query with a list of polygon vertex coordinate pairs.

62 Chapter 11. icepyx Documentation (API Reference)

https://nsidc.org/data/icesat-2/data-sets

icepyx

>>> reg_a_poly = [(-55, 68), (-55, 71), (-48, 71), (-48, 68), (-55, 68)]
>>> reg_a_dates = ['2019-02-20','2019-02-28']
>>> reg_a = Query('ATL06', reg_a_poly, reg_a_dates)
>>> reg_a.spatial_extent
('polygon', [-55.0, 68.0, -55.0, 71.0, -48.0, 71.0, -48.0, 68.0, -55.0, 68.0])

Initializing Query with a geospatial polygon file.

>>> aoi = str(Path('./doc/source/example_notebooks/supporting_files/simple_test_
→˓poly.gpkg').resolve())
>>> reg_a_dates = ['2019-02-22','2019-02-28']
>>> reg_a = Query('ATL06', aoi, reg_a_dates)
>>> print(reg_a)
Product ATL06 v006
('polygon', [-55.0, 68.0, -55.0, 71.0, -48.0, 71.0, -48.0, 68.0, -55.0, 68.0])
Date range ['2019-02-22', '2019-02-28']

__init__(product=None, spatial_extent=None, date_range=None, start_time=None, end_time=None,
version=None, cycles=None, tracks=None, auth=None, **kwargs)

Methods

__init__([product, spatial_extent, ...])

avail_granules([ids, cycles, tracks, cloud]) Obtain information about the available granules for
the query object's parameters.

download_granules(path[, verbose, subset, ...]) Downloads the data ordered using order_granules.
earthdata_login([uid, email, s3token]) Authenticate with NASA Earthdata to enable data or-

dering and download.
latest_version() A reference function to is2ref.latest_version.
order_granules([verbose, subset, email]) Place an order for the available granules for the query

object.
product_all_info() Display all metadata about the product of interest (the

collection).
product_summary_info() Display a summary of selected metadata for the spec-

ified version of the product of interest (the collection).
show_custom_options([dictview]) Display customization/subsetting options available

for this product.
subsetparams(**kwargs) Display the subsetting key:value pairs that will be

submitted.
visualize_elevation() Visualize elevation requested from OpenAltimetry

API using datashader based on cycles https://holoviz.
org/tutorial/Large_Data.html

visualize_spatial_extent() Creates a map displaying the input spatial extent

11.1. Query Class 63

https://holoviz.org/tutorial/Large_Data.html
https://holoviz.org/tutorial/Large_Data.html

icepyx

Attributes

CMRparams Display the CMR key:value pairs that will be submit-
ted.

auth Authentication object returned from earthac-
cess.login() which stores user authentication.

cycles Return the unique ICESat-2 orbital cycle.
dataset Legacy property included to provide depracation

warning.
dates Return an array showing the date range of the query

object.
end_time Return the end time specified for the end date.
granules Return the granules object, which provides the under-

lying funtionality for searching, ordering, and down-
loading granules for the specified product.

order_vars Return the order variables object.
product Return the short name product ID string associated

with the query object.
product_version Return the product version of the data object.
reqparams Display the required key:value pairs that will be sub-

mitted.
s3login_credentials A dictionary which stores login credentials for AWS

s3 access.
session Earthaccess session object for connecting to Earth-

data resources.
spatial Return the spatial object, which provides the un-

derlying functionality for validating and formatting
geospatial objects.

spatial_extent Return an array showing the spatial extent of the
query object. Spatial extent is returned as an in-
put type (which depends on how you initially en-
tered your spatial data) followed by the geometry
data. Bounding box data is [lower-left-longitude,
lower-left-latitute, ... upper-right-longitude, upper-
right-latitude]. Polygon data is [longitude1, latitude1,
longitude2, latitude2, ... longitude_n,latitude_n, lon-
gitude1,latitude1].

start_time Return the start time specified for the start date.
temporal Return the Temporal object containing date/time

range information for the query object.
tracks Return the unique ICESat-2 Reference Ground

Tracks

64 Chapter 11. icepyx Documentation (API Reference)

icepyx

11.1.2 Attributes

Query.CMRparams Display the CMR key:value pairs that will be submitted.
Query.cycles Return the unique ICESat-2 orbital cycle.
Query.dates Return an array showing the date range of the query ob-

ject.
Query.end_time Return the end time specified for the end date.
Query.granules Return the granules object, which provides the underly-

ing funtionality for searching, ordering, and download-
ing granules for the specified product.

Query.order_vars Return the order variables object.
Query.product Return the short name product ID string associated with

the query object.
Query.product_version Return the product version of the data object.
Query.reqparams Display the required key:value pairs that will be submit-

ted.
Query.spatial Return the spatial object, which provides the underlying

functionality for validating and formatting geospatial ob-
jects.

Query.spatial_extent Return an array showing the spatial extent of the query
object. Spatial extent is returned as an input type (which
depends on how you initially entered your spatial data)
followed by the geometry data. Bounding box data
is [lower-left-longitude, lower-left-latitute, ... upper-
right-longitude, upper-right-latitude]. Polygon data is
[longitude1, latitude1, longitude2, latitude2, ... longi-
tude_n,latitude_n, longitude1,latitude1].

Query.subsetparams(**kwargs) Display the subsetting key:value pairs that will be sub-
mitted.

Query.start_time Return the start time specified for the start date.
Query.temporal Return the Temporal object containing date/time range

information for the query object.
Query.tracks Return the unique ICESat-2 Reference Ground Tracks

icepyx.Query.CMRparams

property Query.CMRparams

Display the CMR key:value pairs that will be submitted. It generates the dictionary if it does not already exist.

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.CMRparams
{'short_name': 'ATL06',
'version': '006',
'temporal': '2019-02-20T00:00:00Z,2019-02-28T23:59:59Z',
'bounding_box': '-55.0,68.0,-48.0,71.0'}

11.1. Query Class 65

icepyx

icepyx.Query.cycles

property Query.cycles

Return the unique ICESat-2 orbital cycle.

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.cycles
['No orbital parameters set']

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71], cycles=['03','04'], tracks=['0849
→˓','0902'])
>>> reg_a.cycles
['03', '04']

icepyx.Query.dates

property Query.dates

Return an array showing the date range of the query object. Dates are returned as an array containing the start
and end datetime objects, inclusive, in that order.

Examples

>>> reg_a = ipx.GenQuery([-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.dates
['2019-02-20', '2019-02-28']

>>> reg_a = GenQuery([-55, 68, -48, 71])
>>> reg_a.dates
['No temporal parameters set']

icepyx.Query.end_time

property Query.end_time

Return the end time specified for the end date.

Examples

>>> reg_a = ipx.GenQuery([-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.end_time
'23:59:59'

>>> reg_a = ipx.GenQuery([-55, 68, -48, 71],['2019-02-20','2019-02-28'], end_time=
→˓'10:20:20')
>>> reg_a.end_time
'10:20:20'

66 Chapter 11. icepyx Documentation (API Reference)

icepyx

>>> reg_a = GenQuery([-55, 68, -48, 71])
>>> reg_a.end_time
['No temporal parameters set']

icepyx.Query.granules

property Query.granules

Return the granules object, which provides the underlying funtionality for searching, ordering, and downloading
granules for the specified product. Users are encouraged to use the built-in wrappers rather than trying to access
the granules object themselves.

See also:

avail_granules
order_granules
download_granules
granules.Granules

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.granules
<icepyx.core.granules.Granules at [location]>

icepyx.Query.order_vars

property Query.order_vars

Return the order variables object. This instance is generated when data is ordered from the NSIDC.

See also:

variables.Variables

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.order_vars
<icepyx.core.variables.Variables at [location]>

11.1. Query Class 67

icepyx

icepyx.Query.product

property Query.product

Return the short name product ID string associated with the query object.

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.product
'ATL06'

icepyx.Query.product_version

property Query.product_version

Return the product version of the data object.

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.product_version
'006'

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'],␣
→˓version='4')
>>> reg_a.product_version
'004'

icepyx.Query.reqparams

property Query.reqparams

Display the required key:value pairs that will be submitted. It generates the dictionary if it does not already exist.

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.reqparams
{'page_size': 2000}

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.order_granules()
>>> reg_a.reqparams
{'page_size': 2000, 'page_num': 1, 'request_mode': 'async', 'include_meta': 'Y',
→˓'client_string': 'icepyx'}

68 Chapter 11. icepyx Documentation (API Reference)

icepyx

icepyx.Query.spatial

property Query.spatial

Return the spatial object, which provides the underlying functionality for validating and formatting geospatial
objects. The spatial object has several properties to enable user access to the stored spatial extent in multiple
formats.

See also:

spatial.Spatial.spatial_extent
spatial.Spatial.extent_type
spatial.Spatial.extent_file
spatial.Spatial

Examples

>>> reg_a = ipx.GenQuery([-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.spatial
<icepyx.core.spatial.Spatial at [location]>

>>> print(reg_a.spatial)
Extent type: bounding_box
Coordinates: [-55.0, 68.0, -48.0, 71.0]

icepyx.Query.spatial_extent

property Query.spatial_extent

Return an array showing the spatial extent of the query object. Spatial extent is returned as an input type (which
depends on how you initially entered your spatial data) followed by the geometry data. Bounding box data is
[lower-left-longitude, lower-left-latitute,

. . . upper-right-longitude, upper-right-latitude].

Polygon data is [longitude1, latitude1, longitude2, latitude2,
. . . longitude_n,latitude_n, longitude1,latitude1].

Returns

tuple of length 2
First tuple element is the spatial type (“bounding box” or “polygon”).
Second tuple element is the spatial extent as a list of coordinates.

See also:

Spatial.extent
Spatial.extent_type
Spatial.extent_as_gdf

11.1. Query Class 69

icepyx

Examples

Note: coordinates returned as float, not int >>> reg_a = GenQuery([-55, 68, -48, 71],[‘2019-02-20’,’2019-02-
28’]) >>> reg_a.spatial_extent (‘bounding_box’, [-55.0, 68.0, -48.0, 71.0])

>>> reg_a = GenQuery([(-55, 68), (-55, 71), (-48, 71), (-48, 68), (-55, 68)],['2019-
→˓02-20','2019-02-28'])
>>> reg_a.spatial_extent
('polygon', [-55.0, 68.0, -55.0, 71.0, -48.0, 71.0, -48.0, 68.0, -55.0, 68.0])

NOTE Is this where we wanted to put the file-based test/example? # The test file path is: exam-
ples/supporting_files/simple_test_poly.gpkg

icepyx.Query.subsetparams

Query.subsetparams(**kwargs)
Display the subsetting key:value pairs that will be submitted. It generates the dictionary if it does not already
exist and returns an empty dictionary if subsetting is set to False during ordering.

Parameters

**kwargs
[key-value pairs] Additional parameters to be passed to the subsetter. By de-
fault temporal and spatial subset keys are passed. Acceptable key values are [‘for-
mat’,’projection’,’projection_parameters’,’Coverage’]. At this time (2020-05), only variable
(‘Coverage’) parameters will be automatically formatted.

See also:

order_granules

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.subsetparams()
{'time': '2019-02-20T00:00:00,2019-02-28T23:59:59',
'bbox': '-55.0,68.0,-48.0,71.0'}

icepyx.Query.start_time

property Query.start_time

Return the start time specified for the start date.

70 Chapter 11. icepyx Documentation (API Reference)

icepyx

Examples

>>> reg_a = ipx.GenQuery([-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.start_time
'00:00:00'

>>> reg_a = ipx.GenQuery([-55, 68, -48, 71],['2019-02-20','2019-02-28'], start_time=
→˓'12:30:30')
>>> reg_a.start_time
'12:30:30'

>>> reg_a = GenQuery([-55, 68, -48, 71])
>>> reg_a.start_time
['No temporal parameters set']

icepyx.Query.temporal

property Query.temporal

Return the Temporal object containing date/time range information for the query object.

See also:

temporal.Temporal.start
temporal.Temporal.end
temporal.Temporal

Examples

>>> reg_a = GenQuery([-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> print(reg_a.temporal)
Start date and time: 2019-02-20 00:00:00
End date and time: 2019-02-28 23:59:59

>>> reg_a = GenQuery([-55, 68, -48, 71],cycles=['03','04','05','06','07'], tracks=[
→˓'0849','0902'])
>>> print(reg_a.temporal)
['No temporal parameters set']

icepyx.Query.tracks

property Query.tracks

Return the unique ICESat-2 Reference Ground Tracks

11.1. Query Class 71

icepyx

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.tracks
['No orbital parameters set']

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71], cycles=['03','04'], tracks=['0849
→˓','0902'])
>>> reg_a.tracks
['0849', '0902']

11.1.3 Methods

Query.avail_granules([ids, cycles, tracks, ...]) Obtain information about the available granules for the
query object's parameters.

Query.download_granules(path[, verbose, ...]) Downloads the data ordered using order_granules.
Query.earthdata_login([uid, email, s3token]) Authenticate with NASA Earthdata to enable data order-

ing and download.
Query.latest_version() A reference function to is2ref.latest_version.
Query.order_granules([verbose, subset, email]) Place an order for the available granules for the query

object.
Query.product_all_info() Display all metadata about the product of interest (the

collection).
Query.product_summary_info() Display a summary of selected metadata for the specified

version of the product of interest (the collection).
Query.show_custom_options([dictview]) Display customization/subsetting options available for

this product.
Query.visualize_spatial_extent() Creates a map displaying the input spatial extent
Query.visualize_elevation() Visualize elevation requested from OpenAltimetry API

using datashader based on cycles https://holoviz.org/
tutorial/Large_Data.html

icepyx.Query.avail_granules

Query.avail_granules(ids=False, cycles=False, tracks=False, cloud=False)
Obtain information about the available granules for the query object’s parameters. By default, a complete list
of available granules is obtained and stored in the object, but only summary information is returned. Lists of
granule IDs, cycles and RGTs can be obtained using the boolean triggers.

Parameters

ids
[boolean, default False] Indicates whether the function should return a list of granule IDs.

cycles
[boolean, default False] Indicates whether the function should return a list of orbital cycles.

tracks
[boolean, default False] Indicates whether the function should return a list of RGTs.

cloud
[boolean, default False] Indicates whether the function should return data available in the

72 Chapter 11. icepyx Documentation (API Reference)

https://holoviz.org/tutorial/Large_Data.html
https://holoviz.org/tutorial/Large_Data.html

icepyx

cloud. Note: except in rare cases while data is in the process of being appended to, data
available in the cloud and for download via on-premesis will be identical.

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.avail_granules()
{'Number of available granules': 4,
'Average size of granules (MB)': 55.166646003723145,
'Total size of all granules (MB)': 220.66658401489258}

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-23'])
>>> reg_a.avail_granules(ids=True)
[['ATL06_20190221121851_08410203_006_01.h5', 'ATL06_20190222010344_08490205_006_01.
→˓h5']]
>>> reg_a.avail_granules(cycles=True)
[['02', '02']]
>>> reg_a.avail_granules(tracks=True)
[['0841', '0849']]

icepyx.Query.download_granules

Query.download_granules(path, verbose=False, subset=True, restart=False, **kwargs)
Downloads the data ordered using order_granules.

Parameters

path
[string] String with complete path to desired download location.

verbose
[boolean, default False] Print out all feedback available from the order process. Progress
information is automatically printed regardless of the value of verbose.

subset
[boolean, default True] Apply subsetting to the data order from the NSIDC, returning only
data that meets the subset parameters. Spatial and temporal subsetting based on the input pa-
rameters happens by default when subset=True, but additional subsetting options are avail-
able. Spatial subsetting returns all data that are within the area of interest (but not complete
granules. This eliminates false-positive granules returned by the metadata-level search)

restart
[boolean, default false] If previous download was terminated unexpectedly. Run again with
restart set to True to continue.

**kwargs
[key-value pairs] Additional parameters to be passed to the subsetter. By de-
fault temporal and spatial subset keys are passed. Acceptable key values are [‘for-
mat’,’projection’,’projection_parameters’,’Coverage’]. The variable ‘Coverage’ list should
be constructed using the order_vars.wanted attribute of the object. At this time (2020-05),
only variable (‘Coverage’) parameters will be automatically formatted.

See also:

granules.download

11.1. Query Class 73

icepyx

icepyx.Query.earthdata_login

Query.earthdata_login(uid=None, email=None, s3token=None, **kwargs)→ None
Authenticate with NASA Earthdata to enable data ordering and download. Credential storage details are de-
scribed in the EathdataAuthMixin class section.

Note: This method is deprecated and will be removed in a future release. It is no longer required to explicitly
run .earthdata_login(). Authentication will be performed by the module as needed.

Parameters

uid
[string, default None] Deprecated keyword for Earthdata login user ID.

email
[string, default None] Deprecated keyword for backwards compatibility.

s3token
[boolean, default None] Deprecated keyword to generate AWS s3 ICESat-2 data access cre-
dentials

kwargs
[key:value pairs] Keyword arguments to be passed into earthaccess.login().

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.earthdata_login()
Enter your Earthdata Login username: ___________________

EARTHDATA_USERNAME and EARTHDATA_PASSWORD are not set in the current environment, try setting
them or use a different strategy (netrc, interactive) No .netrc found in /Users/username

icepyx.Query.latest_version

Query.latest_version()

A reference function to is2ref.latest_version.

Determine the most recent version available for the given product.

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.latest_version()
'006'

74 Chapter 11. icepyx Documentation (API Reference)

icepyx

icepyx.Query.order_granules

Query.order_granules(verbose=False, subset=True, email=False, **kwargs)
Place an order for the available granules for the query object.

Parameters

verbose
[boolean, default False] Print out all feedback available from the order process. Progress
information is automatically printed regardless of the value of verbose.

subset
[boolean, default True] Apply subsetting to the data order from the NSIDC, returning only
data that meets the subset parameters. Spatial and temporal subsetting based on the input pa-
rameters happens by default when subset=True, but additional subsetting options are avail-
able. Spatial subsetting returns all data that are within the area of interest (but not complete
granules. This eliminates false-positive granules returned by the metadata-level search)

email: boolean, default False
Have NSIDC auto-send order status email updates to indicate order status as pend-
ing/completed. The emails are sent to the account associated with your Earthdata account.

**kwargs
[key-value pairs] Additional parameters to be passed to the subsetter. By de-
fault temporal and spatial subset keys are passed. Acceptable key values are [‘for-
mat’,’projection’,’projection_parameters’,’Coverage’]. The variable ‘Coverage’ list should
be constructed using the order_vars.wanted attribute of the object. At this time (2020-05),
only variable (‘Coverage’) parameters will be automatically formatted.

See also:

granules.place_order

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.order_granules()
order ID: [###############]
[order status output]
error messages:
[if any were returned from the NSIDC subsetter, e.g. No data found that matched␣
→˓subset constraints.]
.
.
.
Retry request status is: complete

11.1. Query Class 75

icepyx

icepyx.Query.product_all_info

Query.product_all_info()

Display all metadata about the product of interest (the collection).

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.product_all_info()
{very long prettily-formatted dictionary output}

icepyx.Query.product_summary_info

Query.product_summary_info()

Display a summary of selected metadata for the specified version of the product of interest (the collection).

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'],␣
→˓version='006')
>>> reg_a.product_summary_info()
title : ATLAS/ICESat-2 L3A Land Ice Height V006
short_name : ATL06
version_id : 006
time_start : 2018-10-14T00:00:00.000Z
coordinate_system : CARTESIAN
summary : This data set (ATL06) provides geolocated, land-ice surface heights␣
→˓(above the WGS 84 ellipsoid, ITRF2014 reference frame), plus ancillary parameters␣
→˓that can be used to interpret and assess the quality of the height estimates. The␣
→˓data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS)␣
→˓instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2)␣
→˓observatory.
orbit_parameters : {}

icepyx.Query.show_custom_options

Query.show_custom_options(dictview=False)
Display customization/subsetting options available for this product.

Parameters

dictview
[boolean, default False] Show the variable portion of the custom options list as a dictionary
with key:value pairs representing variable:paths-to-variable rather than as a long list of full
variable paths.

76 Chapter 11. icepyx Documentation (API Reference)

icepyx

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.show_custom_options(dictview=True)
Subsetting options
[{'id': 'ICESAT2',
'maxGransAsyncRequest': '2000',
'maxGransSyncRequest': '100',
'spatialSubsetting': 'true',
'spatialSubsettingShapefile': 'true',
'temporalSubsetting': 'true',
'type': 'both'}]
Data File Formats (Reformatting Options)
['TABULAR_ASCII', 'NetCDF4-CF', 'Shapefile', 'NetCDF-3']
Reprojection Options
[]
Data File (Reformatting) Options Supporting Reprojection
['TABULAR_ASCII', 'NetCDF4-CF', 'Shapefile', 'NetCDF-3', 'No reformatting']
Data File (Reformatting) Options NOT Supporting Reprojection
[]
Data Variables (also Subsettable)
['ancillary_data/atlas_sdp_gps_epoch',
'ancillary_data/control',
'ancillary_data/data_end_utc',
.
.
.
'quality_assessment/gt3r/signal_selection_source_fraction_3']

icepyx.Query.visualize_spatial_extent

Query.visualize_spatial_extent()

Creates a map displaying the input spatial extent

Examples

>>> reg_a = ipx.Query('ATL06','path/spatialfile.shp',['2019-02-22','2019-02-28'])
>>> reg_a.visualize_spatial_extent
[visual map output]

icepyx.Query.visualize_elevation

Query.visualize_elevation()

Visualize elevation requested from OpenAltimetry API using datashader based on cycles https://holoviz.org/
tutorial/Large_Data.html

Returns

map_cycle, map_rgt + lineplot_rgt
[Holoviews objects] Holoviews data visualization elements

11.1. Query Class 77

https://holoviz.org/tutorial/Large_Data.html
https://holoviz.org/tutorial/Large_Data.html

icepyx

11.2 Read Class

11.2.1 Constructor

Read(data_source[, glob_kwargs, ...]) Data object to read ICESat-2 data into the specified for-
mats.

icepyx.Read

class icepyx.Read(data_source, glob_kwargs={}, out_obj_type=None, product=None, filename_pattern=None,
catalog=None)

Data object to read ICESat-2 data into the specified formats. Provides flexiblity for reading nested hdf5 files into
common analysis formats.

Parameters

data_source
[string, List] A string or list which specifies the files to be read. The string can be either: 1)
the path of a single file 2) the path to a directory or 3) a [glob string](https://docs.python.org/
3/library/glob.html). The List must be a list of strings, each of which is the path of a single
file.

glob_kwargs
[dict, default {}] Additional arguments to be passed into the [glob.glob()](https://docs.
python.org/3/library/glob.html#glob.glob)function

out_obj_type
[object, default xarray.Dataset] The desired format for the data to be read in. Currently, only
xarray.Dataset objects (default) are available. Please ask us how to help enable usage of other
data objects!

product
[string] ICESat-2 data product ID, also known as “short name” (e.g. ATL03). Available data
products can be found at: https://nsidc.org/data/icesat-2/data-sets Deprecation warning:
This argument is no longer required and has been deprecated. The dataset product is read
from the file metadata.

filename_pattern
[string, default None] String that shows the filename pattern as previously re-
quired for Intake’s path_as_pattern argument. The default describes files
downloaded directly from NSIDC (subsetted and non-subsetted) for most
products (e.g. ATL06). The ATL11 filename pattern from NSIDC is:
‘ATL{product:2}_{rgt:4}{orbitsegment:2}_{cycles:4}_{version:3}_{revision:2}.h5’.
Deprecation warning: This argument is no longer required and has been deprecated.

catalog
[string, default None] Full path to an Intake catalog for reading in data. If you still need to cre-
ate a catalog, leave as default. Deprecation warning: This argument has been deprecated.
Please use the data_source argument to pass in valid data.

Returns

read object

78 Chapter 11. icepyx Documentation (API Reference)

https://docs.python.org/3/library/glob.html
https://docs.python.org/3/library/glob.html
https://docs.python.org/3/library/glob.html#glob.glob)function
https://docs.python.org/3/library/glob.html#glob.glob)function
https://nsidc.org/data/icesat-2/data-sets

icepyx

Examples

Reading a single file >>> ipx.Read(‘/path/to/data/processed_ATL06_20190226005526_09100205_006_02.h5’)
doctest: +SKIP

Reading all files in a directory >>> ipx.Read(‘/path/to/data/’) # doctest: +SKIP

Reading files that match a particular pattern (here, all .h5 files that start with processed_ATL06_). >>>
ipx.Read(‘/path/to/data/processed_ATL06_*.h5’) # doctest: +SKIP

Reading a specific list of files >>> list_of_files = [. . . ‘/path/to/data/processed_ATL06_20190226005526_09100205_006_02.h5’,
. . . ‘/path/to/more/data/processed_ATL06_20191202102922_10160505_006_01.h5’, . . .] >>>
ipx.Read(list_of_files) # doctest: +SKIP

__init__(data_source, glob_kwargs={}, out_obj_type=None, product=None, filename_pattern=None,
catalog=None)

Methods

__init__(data_source[, glob_kwargs, ...])

earthdata_login([uid, email, s3token]) Authenticate with NASA Earthdata to enable data or-
dering and download.

load() Create a single Xarray Dataset containing the data
from one or more files and/or ground tracks.

Attributes

auth Authentication object returned from earthac-
cess.login() which stores user authentication.

filelist Return the list of files represented by this Read object.
product Return the product associated with the Read object.
s3login_credentials A dictionary which stores login credentials for AWS

s3 access.
session Earthaccess session object for connecting to Earth-

data resources.
vars Return the variables object associated with the data

being read in.

11.2.2 Attributes

Read.filelist Return the list of files represented by this Read object.
Read.product Return the product associated with the Read object.
Read.vars Return the variables object associated with the data be-

ing read in.

11.2. Read Class 79

icepyx

icepyx.Read.filelist

property Read.filelist

Return the list of files represented by this Read object.

icepyx.Read.product

property Read.product

Return the product associated with the Read object.

icepyx.Read.vars

property Read.vars

Return the variables object associated with the data being read in. This instance is generated from the source file
or first file in a list of input files (when source is a directory).

See also:

variables.Variables

Examples

>>> reader = ipx.Read(path_root, "ATL06", pattern)
>>> reader.vars
<icepyx.core.variables.Variables at [location]>

11.2.3 Methods

Read.load() Create a single Xarray Dataset containing the data from
one or more files and/or ground tracks.

icepyx.Read.load

Read.load()

Create a single Xarray Dataset containing the data from one or more files and/or ground tracks. Uses icepyx’s
ICESat-2 data product awareness and Xarray’s combine_by_coords function.

All items in the wanted variables list will be loaded from the files into memory. If you do not provide a wanted
variables list, a default one will be created for you.

80 Chapter 11. icepyx Documentation (API Reference)

icepyx

11.3 Quest Class

11.3.1 Constructors

GenQuery([spatial_extent, date_range, ...]) Base class for querying data.
Quest(spatial_extent, date_range[, ...]) QUEST - Query Unify Explore SpatioTemporal - ob-

ject to query, obtain, and perform basic operations on
datasets (i.e. Argo, BGC Argo, MODIS, etc) for com-
bined analysis with ICESat-2 data products.

icepyx.Quest

class icepyx.Quest(spatial_extent, date_range, start_time=None, end_time=None, proj='default')
QUEST - Query Unify Explore SpatioTemporal - object to query, obtain, and perform basic operations on datasets
(i.e. Argo, BGC Argo, MODIS, etc) for combined analysis with ICESat-2 data products. A new dataset can be
added using the dataset.py template. QUEST expands the icepyx GenQuery superclass.

See the doc page for GenQuery for details on temporal and spatial input parameters.

Parameters

proj
[proj4 string] Geospatial projection. Not yet implemented

Returns

quest object

See also:

GenQuery

Examples

Initializing Quest with a bounding box.

>>> reg_a_bbox = [-55, 68, -48, 71]
>>> reg_a_dates = ['2019-02-20','2019-02-28']
>>> reg_a = Quest(spatial_extent=reg_a_bbox, date_range=reg_a_dates)
>>> print(reg_a)
Extent type: bounding_box
Coordinates: [-55.0, 68.0, -48.0, 71.0]
Date range: (2019-02-20 00:00:00, 2019-02-28 23:59:59)
Data sets: None

Add datasets to the quest object.

>>> reg_a.datasets = {'ATL07':None, 'Argo':None}
>>> print(reg_a)
Extent type: bounding_box
Coordinates: [-55.0, 68.0, -48.0, 71.0]
Date range: (2019-02-20 00:00:00, 2019-02-28 23:59:59)
Data sets: ATL07, Argo

11.3. Quest Class 81

icepyx

__init__(spatial_extent, date_range, start_time=None, end_time=None, proj='default')
Tells QUEST to initialize data given the user input spatiotemporal data.

Methods

__init__(spatial_extent, date_range[, ...]) Tells QUEST to initialize data given the user input
spatiotemporal data.

add_argo([params, presRange]) Adds Argo (including Argo-BGC) to QUEST struc-
ture.

add_icesat2(product[, start_time, end_time, ...]) Adds ICESat-2 datasets to QUEST structure.
download_all([path]) Downloads requested dataset(s).
save_all(path) Saves all datasets according to their respective .save()

functionality.
search_all(**kwargs) Searches for requred dataset within platform (i.e.

ICESat-2, Argo) of interest.

Attributes

dates Return an array showing the date range of the query
object.

end_time Return the end time specified for the end date.
spatial Return the spatial object, which provides the un-

derlying functionality for validating and formatting
geospatial objects.

spatial_extent Return an array showing the spatial extent of the
query object. Spatial extent is returned as an in-
put type (which depends on how you initially en-
tered your spatial data) followed by the geometry
data. Bounding box data is [lower-left-longitude,
lower-left-latitute, ... upper-right-longitude, upper-
right-latitude]. Polygon data is [longitude1, latitude1,
longitude2, latitude2, ... longitude_n,latitude_n, lon-
gitude1,latitude1].

start_time Return the start time specified for the start date.
temporal Return the Temporal object containing date/time

range information for the query object.

11.3.2 Attributes

82 Chapter 11. icepyx Documentation (API Reference)

icepyx

11.3.3 Methods

11.4 Variables Class

11.4.1 Constructor

Variables([vartype, path, product, version, ...]) Get, create, interact, and manipulate lists of variables
and variable paths contained in ICESat-2 products.

icepyx.Variables

class icepyx.Variables(vartype=None, path=None, product=None, version=None, avail=None, wanted=None,
auth=None)

Get, create, interact, and manipulate lists of variables and variable paths contained in ICESat-2 products.

Parameters

vartype
[string] This argument is deprecated. The vartype will be inferred from data_source. One of
[‘order’, ‘file’] to indicate the source of the input variables. This field will be auto-populated
when a variable object is created as an attribute of a query object.

path
[string, default None] The path to a local Icesat-2 file. The variables list will contain the
variables present in this file. Either path or product are required input arguments.

product
[string, default None] Properly formatted string specifying a valid ICESat-2 product. The
variables list will contain all available variables for this product. Either product or path are
required input arguments.

version
[string, default None] Properly formatted string specifying a valid version of the ICESat-2
product.

avail
[dictionary, default None] Dictionary (key:values) of available variable names (keys) and
paths (values).

wanted
[dictionary, default None] As avail, but for the desired list of variables

auth
[earthaccess.auth.Auth, default None] An earthaccess authentication object. Available as an
argument so an existing earthaccess.auth.Auth object can be used for authentication. If not
given, a new auth object will be created whenever authentication is needed.

__init__(vartype=None, path=None, product=None, version=None, avail=None, wanted=None,
auth=None)

11.4. Variables Class 83

icepyx

Methods

__init__([vartype, path, product, version, ...])

append([defaults, var_list, beam_list, ...]) Add to the list of desired variables using user speci-
fied beams and variable list.

avail([options, internal]) Get the list of available variables and variable paths
from the input data product

earthdata_login([uid, email, s3token]) Authenticate with NASA Earthdata to enable data or-
dering and download.

parse_var_list(varlist[, tiered, tiered_vars]) Parse a list of path strings into tiered lists and names
of variables

remove([all, var_list, beam_list, keyword_list]) Remove the variables and paths from the wanted list
using user specified beam, keyword,

Attributes

auth Authentication object returned from earthac-
cess.login() which stores user authentication.

path

product

s3login_credentials A dictionary which stores login credentials for AWS
s3 access.

session Earthaccess session object for connecting to Earth-
data resources.

version

11.4.2 Methods

Variables.avail([options, internal]) Get the list of available variables and variable paths from
the input data product

Variables.parse_var_list(varlist[, tiered, ...]) Parse a list of path strings into tiered lists and names of
variables

Variables.append([defaults, var_list, ...]) Add to the list of desired variables using user specified
beams and variable list.

Variables.remove([all, var_list, beam_list, ...]) Remove the variables and paths from the wanted list us-
ing user specified beam, keyword,

84 Chapter 11. icepyx Documentation (API Reference)

icepyx

icepyx.Variables.avail

Variables.avail(options=False, internal=False)
Get the list of available variables and variable paths from the input data product

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'],␣
→˓version='5')
>>> reg_a.order_vars.avail()
['ancillary_data/atlas_sdp_gps_epoch',
'ancillary_data/control',
'ancillary_data/data_end_utc',
'ancillary_data/data_start_utc',
.
.
.
'quality_assessment/gt3r/signal_selection_source_fraction_3']

icepyx.Variables.parse_var_list

static Variables.parse_var_list(varlist, tiered=True, tiered_vars=False)
Parse a list of path strings into tiered lists and names of variables

Parameters

varlist
[list of strings] List of full variable paths to be parsed.

tiered
[boolean, default True] Whether to return the paths (sans variable name)
as a nested list of component strings (e.g. [[‘orbit_info’, ‘ancillary_data’,
‘gt1l’],[‘none’,’none’,’land_ice_segments’]]) or a single list of path strings (e.g. [‘or-
bit_info’,’ancillary_data’,’gt1l/land_ice_segments’])

tiered_vars
[boolean, default False] Whether or not to append a list of the variable names
to the nested list of component strings (e.g. [[‘orbit_info’, ‘ancillary_data’,
‘gt1l’],[‘none’,’none’,’land_ice_segments’],

[‘sc_orient’,’atlas_sdp_gps_epoch’,’h_li’]]))

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'],␣
→˓version='1')
>>> var_dict, paths = reg_a.order_vars.parse_var_list(reg_a.order_vars.avail())
>>> var_dict
{'atlas_sdp_gps_epoch': ['ancillary_data/atlas_sdp_gps_epoch'],
.
.
.

(continues on next page)

11.4. Variables Class 85

icepyx

(continued from previous page)

'latitude': ['gt1l/land_ice_segments/latitude',
'gt1r/land_ice_segments/latitude',
'gt2l/land_ice_segments/latitude',
'gt2r/land_ice_segments/latitude',
'gt3l/land_ice_segments/latitude',
'gt3r/land_ice_segments/latitude'],
.
.
.
}
>>> var_dict.keys()
dict_keys(['atlas_sdp_gps_epoch', 'control', 'data_end_utc', 'data_start_utc',
'end_cycle', 'end_delta_time', 'end_geoseg', 'end_gpssow', 'end_gpsweek',
'end_orbit', 'end_region', 'end_rgt', 'granule_end_utc', 'granule_start_utc',
'qa_at_interval', 'release', 'start_cycle', 'start_delta_time', 'start_geoseg',
'start_gpssow', 'start_gpsweek', 'start_orbit', 'start_region', 'start_rgt',
'version', 'dt_hist', 'fit_maxiter', 'fpb_maxiter', 'maxiter', 'max_res_ids',
'min_dist', 'min_gain_th', 'min_n_pe', 'min_n_sel', 'min_signal_conf', 'n_hist',
'nhist_bins', 'n_sigmas', 'proc_interval', 'qs_lim_bsc', 'qs_lim_hrs', 'qs_lim_
→˓hsigma',
'qs_lim_msw', 'qs_lim_snr', 'qs_lim_sss', 'rbin_width', 'sigma_beam', 'sigma_tx',
't_dead', 'atl06_quality_summary', 'delta_time', 'h_li', 'h_li_sigma', 'latitude',
'longitude', 'segment_id', 'sigma_geo_h', 'fpb_mean_corr', 'fpb_mean_corr_sigma',
'fpb_med_corr', 'fpb_med_corr_sigma', 'fpb_n_corr', 'med_r_fit', 'tx_mean_corr',
tx_med_corr', 'dem_flag', 'dem_h', 'geoid_h', 'dh_fit_dx', 'dh_fit_dx_sigma', '
dh_fit_dy', 'h_expected_rms', 'h_mean', 'h_rms_misfit', 'h_robust_sprd',
'n_fit_photons', 'n_seg_pulses', 'sigma_h_mean', 'signal_selection_source',
'signal_selection_source_status', 'snr', 'snr_significance', 'w_surface_window_final
→˓',
ckgrd', 'bsnow_conf', 'bsnow_h', 'bsnow_od', 'cloud_flg_asr', 'cloud_flg_atm', 'dac
→˓',
'e_bckgrd', 'layer_flag', 'msw_flag', 'neutat_delay_total', 'r_eff', 'solar_azimuth
→˓',
'solar_elevation', 'tide_earth', 'tide_equilibrium', 'tide_load', 'tide_ocean',
'tide_pole', 'ref_azimuth', 'ref_coelv', 'seg_azimuth', 'sigma_geo_at', 'sigma_geo_r
→˓',
igma_geo_xt', 'x_atc', 'y_atc', 'bckgrd_per_m', 'bin_top_h', 'count', 'ds_segment_id
→˓',
'lat_mean', 'lon_mean', 'pulse_count', 'segment_id_list', 'x_atc_mean', 'record_
→˓number',
'reference_pt_lat', 'reference_pt_lon', 'signal_selection_status_all',
'signal_selection_status_backup', 'signal_selection_status_confident', 'crossing_
→˓time',
'cycle_number', 'lan', 'orbit_number', 'rgt', 'sc_orient', 'sc_orient_time',
'qa_granule_fail_reason', 'qa_granule_pass_fail', 'signal_selection_source_fraction_
→˓0',
'signal_selection_source_fraction_1', 'signal_selection_source_fraction_2',
'signal_selection_source_fraction_3'])
>>> import numpy
>>> numpy.unique(paths)
array(['ancillary_data', 'bias_correction', 'dem', 'fit_statistics',
'geophysical', 'ground_track', 'gt1l', 'gt1r', 'gt2l', 'gt2r',

(continues on next page)

86 Chapter 11. icepyx Documentation (API Reference)

icepyx

(continued from previous page)

'gt3l', 'gt3r', 'land_ice', 'land_ice_segments', 'none',
'orbit_info', 'quality_assessment', 'residual_histogram',
'segment_quality', 'signal_selection_status'], dtype='<U23')

icepyx.Variables.append

Variables.append(defaults=False, var_list=None, beam_list=None, keyword_list=None)
Add to the list of desired variables using user specified beams and variable list. A pregenerated default variable
list can be used by setting defaults to True. Note: The calibrated backscatter cab_prof is not in the default list for
ATL09

Parameters

defaults
[boolean, default False] Include the variables in the default variable list. Defaults are defined
per-data product. When specified in conjuction with a var_list, default variables not on the
user- specified list will be added to the order.

var_list
[list of strings, default None] A list of variables to request, if not all available variables
are wanted. A list of available variables can be obtained by entering var_list=[‘’] into the
function.

beam_list
[list of strings, default None] A list of beam strings, if only selected beams are wanted (the
default value of None will automatically include all beams). For ATL09, acceptable values
are [‘profile_1’, ‘profile_2’, ‘profile_3’]. For ATL11, acceptable values are [‘pt1’,’pt2’,’pt3’].
For all other products, acceptable values are [‘gt1l’, ‘gt1r’, ‘gt2l’, ‘gt2r’, ‘gt3l’, ‘gt3r’].

keyword_list
[list of strings, default None] A list of subdirectory names (keywords), from any heirarchy
level within the data structure, to select variables within the product that include that keyword
in their path. A list of availble keywords can be obtained by entering keyword_list=[‘’] into
the function.

Notes

See also the IS2_data_access2-subsetting example notebook

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])

To add all variables related to a specific ICESat-2 beam

>>> reg_a.order_vars.append(beam_list=['gt1r'])

To include the default variables:

>>> reg_a.order_vars.append(defaults=True)

To add specific variables in orbit_info

11.4. Variables Class 87

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access2-subsetting.html

icepyx

>>> reg_a.order_vars.append(keyword_list=['orbit_info'],var_list=['sc_orient_time'])

To add all variables and paths in ancillary_data

>>> reg_a.order_vars.append(keyword_list=['ancillary_data'])

icepyx.Variables.remove

Variables.remove(all=False, var_list=None, beam_list=None, keyword_list=None)

Remove the variables and paths from the wanted list using user specified beam, keyword,
and variable lists.

Parameters

all
[boolean, default False] Remove all variables and paths from the wanted list.

var_list
[list of strings, default None] A list of variables to request, if not all available variables
are wanted. A list of available variables can be obtained by entering var_list=[‘’] into the
function.

beam_list
[list of strings, default None] A list of beam strings, if only selected beams are wanted (the
default value of None will automatically include all beams). For ATL09, acceptable values
are [‘profile_1’, ‘profile_2’, ‘profile_3’]. For ATL11, acceptable values are [‘pt1’,’pt2’,’pt3’].
For all other products, acceptable values are [‘gt1l’, ‘gt1r’, ‘gt2l’, ‘gt2r’, ‘gt3l’, ‘gt3r’].

keyword_list
[list of strings, default None] A list of subdirectory names (keywords), from any heirarchy
level within the data structure, to select variables within the product that include that keyword
in their path.

Notes

See also the IS2_data_access2-subsetting example notebook

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])

To clear the list of wanted variables

>>> reg_a.order_vars.remove(all=True)

To remove all variables related to a specific ICESat-2 beam

>>> reg_a.order_vars.remove(beam_list=['gt1r'])

To remove specific variables in orbit_info

88 Chapter 11. icepyx Documentation (API Reference)

https://icepyx.readthedocs.io/en/latest/example_notebooks/IS2_data_access2-subsetting.html

icepyx

>>> reg_a.order_vars.remove(keyword_list=['orbit_info'],var_list=['sc_orient_time'])

To remove all variables and paths in ancillary_data

>>> reg_a.order_vars.remove(keyword_list=['ancillary_data'])

11.5 Components

11.5.1 APIformatting

class icepyx.core.APIformatting.Parameters(partype, values=None, reqtype=None)
Bases: object

Build and update the parameter lists needed to submit a data order

Parameters

partype
[string] Type of parameter list. Must be one of [‘CMR’,’required’,’subset’]

values
[dictionary, default None] Dictionary of already-formatted parameters, if there are any, to
avoid re-creating them.

reqtype
[string, default None] For partype==’required’, indicates which parameters are required
based on the type of query. Must be one of [‘search’,’download’]

build_params(**kwargs)
Build the parameter dictionary of formatted key:value pairs for submission to NSIDC in the data request.

Parameters

**kwargs
Keyword inputs containing the needed information to build the parameter list, depending on
parameter type, if the already formatted key:value is not submitted as a kwarg. May include
optional keyword arguments to be passed to the subsetter. Valid keywords are time, bbox
OR Boundingshape, format, projection, projection_parameters, and Coverage.

Keyword argument inputs for ‘CMR’ may include: dataset (data product), version, start,
end, extent_type, spatial_extent Keyword argument inputs for ‘required’ may include:
page_size, page_num, request_mode, include_meta, client_string Keyword argument in-
puts for ‘subset’ may include: geom_filepath, start, end, extent_type, spatial_extent

check_req_values()

Check that all of the required keys have values, if the key was passed in with the values parameter.

check_values()

Check that the non-required keys have values, if the key was passed in with the values parameter.

property fmted_keys

Returns the dictionary of formated keys associated with the parameter object.

property poss_keys

Returns a list of possible input keys for the given parameter object. Possible input keys depend on the
parameter type (partype).

11.5. Components 89

icepyx

icepyx.core.APIformatting.combine_params(*param_dicts)
Combine multiple dictionaries into one.

Parameters

params
[dictionaries] Unlimited number of dictionaries to combine

Returns

single dictionary of all input dictionaries combined

Examples

>>> CMRparams = {'short_name': 'ATL06', 'version': '002', 'temporal': '2019-02-
→˓20T00:00:00Z,2019-02-28T23:59:59Z', 'bounding_box': '-55,68,-48,71'}
>>> reqparams = {'page_size': 2000, 'page_num': 1}
>>> ipx.core.APIformatting.combine_params(CMRparams, reqparams)
{'short_name': 'ATL06',
'version': '002',
'temporal': '2019-02-20T00:00:00Z,2019-02-28T23:59:59Z',
'bounding_box': '-55,68,-48,71',
'page_size': 2000,
'page_num': 1}

icepyx.core.APIformatting.to_string(params)
Combine a parameter dictionary into a single url string

Parameters

params
[dictionary]

Returns

url string of input dictionary (not encoded)

Examples

>>> CMRparams = {'short_name': 'ATL06', 'version': '002', 'temporal': '2019-02-
→˓20T00:00:00Z,2019-02-28T23:59:59Z', 'bounding_box': '-55,68,-48,71'}
>>> reqparams = {'page_size': 2000, 'page_num': 1}
>>> params = ipx.core.APIformatting.combine_params(CMRparams, reqparams)
>>> ipx.core.APIformatting.to_string(params)
'short_name=ATL06&version=002&temporal=2019-02-20T00:00:00Z,2019-02-28T23:59:59Z&
→˓bounding_box=-55,68,-48,71&page_size=2000&page_num=1'

90 Chapter 11. icepyx Documentation (API Reference)

icepyx

11.5.2 EarthdataAuthMixin

exception icepyx.core.auth.AuthenticationError

Bases: Exception

Raised when an error is encountered while authenticating Earthdata credentials

class icepyx.core.auth.EarthdataAuthMixin(auth=None)
Bases: object

This mixin class generates the needed authentication sessions and tokens, including for NASA Earthdata cloud
access. Authentication is completed using the [earthaccess library](https://nsidc.github.io/earthaccess/). Meth-
ods for authenticating are:

1. Storing credentials as environment variables ($EARTHDATA_LOGIN and $EARTHDATA_PASSWORD)

2. Entering credentials interactively

3. Storing credentials in a .netrc file (not recommended for security reasons)

More details on using these methods is available in the [earthaccess documentation](https://nsidc.github.io/
earthaccess/tutorials/restricted-datasets/#auth).

This class can be inherited by any other class that requires authentication. For example, the Query class inherits
this one, and so a Query object has the .session property. The method earthdata_login() is included for backwards
compatibility.

The class can be created without any initialization parameters, and the properties will be populated when they
are called. It can alternately be initialized with an earthaccess.auth.Auth object, which will then be used to create
a session or s3login_credentials as they are called.

Parameters

auth
[earthaccess.auth.Auth, default None] Optional parameter to initialize an object with existing
credentials.

Examples

>>> a = EarthdataAuthMixin()
>>> a.session
>>> a.s3login_credentials

property auth

Authentication object returned from earthaccess.login() which stores user authentication.

earthdata_login(uid=None, email=None, s3token=None, **kwargs)→ None
Authenticate with NASA Earthdata to enable data ordering and download. Credential storage details are
described in the EathdataAuthMixin class section.

Note: This method is deprecated and will be removed in a future release. It is no longer required to explicitly
run .earthdata_login(). Authentication will be performed by the module as needed.

Parameters

uid
[string, default None] Deprecated keyword for Earthdata login user ID.

email
[string, default None] Deprecated keyword for backwards compatibility.

11.5. Components 91

https://nsidc.github.io/earthaccess/
https://nsidc.github.io/earthaccess/tutorials/restricted-datasets/#auth
https://nsidc.github.io/earthaccess/tutorials/restricted-datasets/#auth

icepyx

s3token
[boolean, default None] Deprecated keyword to generate AWS s3 ICESat-2 data access
credentials

kwargs
[key:value pairs] Keyword arguments to be passed into earthaccess.login().

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> reg_a.earthdata_login()
Enter your Earthdata Login username: ___________________

EARTHDATA_USERNAME and EARTHDATA_PASSWORD are not set in the current environment, try
setting them or use a different strategy (netrc, interactive) No .netrc found in /Users/username

property s3login_credentials

A dictionary which stores login credentials for AWS s3 access. This property is accessed if using AWS
cloud data.

Because s3 tokens are only good for one hour, this function will automatically check if an hour has elapsed
since the last token use and generate a new token if necessary.

property session

Earthaccess session object for connecting to Earthdata resources.

11.5.3 granules

class icepyx.core.granules.Granules

Bases: object

Interact with ICESat-2 data granules. This includes finding, ordering, and downloading them as well as (not yet
implemented) getting already downloaded granules into the query object.

Returns

Granules object

download(verbose, path, session=None, restart=False)
Downloads the data for the object’s orderIDs, which are generated by ordering data from the NSIDC.

Parameters

verbose
[boolean, default False] Print out all feedback available from the order process. Progress
information is automatically printed regardless of the value of verbose.

path
[string] String with complete path to desired download directory and location.

session
[requests.session object] A session object authenticating the user to download data using
their Earthdata login information. The session object will automatically be passed from
the query object if you have successfully logged in there.

restart
[boolean, default False] Restart your download if it has been interrupted. If the kernel has

92 Chapter 11. icepyx Documentation (API Reference)

icepyx

been restarted, but you successfully completed your order, you will need to re-initialize
your query class object and log in to Earthdata and can then skip immediately to the down-
load_granules method with restart=True.

See also:

query.Query.download_granules

Notes

This function is used by query.Query.download_granules(), which automatically feeds in the required pa-
rameters.

get_avail(CMRparams, reqparams, cloud=False)
Get a list of available granules for the query object’s parameters. Generates the avail attribute of the granules
object.

Parameters

CMRparams
[dictionary] Dictionary of properly formatted CMR search parameters.

reqparams
[dictionary] Dictionary of properly formatted parameters required for searching, ordering,
or downloading from NSIDC.

cloud
[deprecated, boolean, default False] CMR metadata is always collected for the cloud sys-
tem.

See also:

APIformatting.Parameters
query.Query.avail_granules

Notes

This function is used by query.Query.avail_granules(), which automatically feeds in the required parame-
ters.

place_order(CMRparams, reqparams, subsetparams, verbose, subset=True, session=None,
geom_filepath=None)

Place an order for the available granules for the query object. Adds the list of zipped files (orders) to the
granules data object (which is stored as the granules attribute of the query object). You must be logged in
to Earthdata to use this function.

Parameters

CMRparams
[dictionary] Dictionary of properly formatted CMR search parameters.

reqparams
[dictionary] Dictionary of properly formatted parameters required for searching, ordering,
or downloading from NSIDC.

subsetparams
[dictionary] Dictionary of properly formatted subsetting parameters. An empty dictionary
is passed as input here when subsetting is set to False in query methods.

11.5. Components 93

icepyx

verbose
[boolean, default False] Print out all feedback available from the order process. Progress
information is automatically printed regardless of the value of verbose.

subset
[boolean, default True] Apply subsetting to the data order from the NSIDC, returning only
data that meets the subset parameters. Spatial and temporal subsetting based on the input
parameters happens by default when subset=True, but additional subsetting options are
available. Spatial subsetting returns all data that are within the area of interest (but not
complete granules. This eliminates false-positive granules returned by the metadata-level
search)

session
[requests.session object] A session object authenticating the user to order data using their
Earthdata login information. The session object will automatically be passed from the
query object if you have successfully logged in there.

geom_filepath
[string, default None] String of the full filename and path when the spatial input is a file.

See also:

query.Query.order_granules

Notes

This function is used by query.Query.order_granules(), which automatically feeds in the required parame-
ters.

icepyx.core.granules.gran_IDs(grans, ids=False, cycles=False, tracks=False, dates=False, cloud=False)
Returns a list of granule information for each granule dictionary in the input list of granule dictionaries. Granule
info may be from a list of those available from NSIDC (for ordering/download) or a list of granules present on
the file system.

Parameters

grans
[list of dictionaries] List of input granule json dictionaries. Must have key “pro-
ducer_granule_id”

ids: boolean, default True
Return a list of the available granule IDs for the granule dictionary

cycles
[boolean, default False] Return a list of the available orbital cycles for the granule dictionary

tracks
[boolean, default False] Return a list of the available Reference Ground Tracks (RGTs) for
the granule dictionary

dates
[boolean, default False] Return a list of the available dates for the granule dictionary.

cloud
[boolean, default False] Return a a list of AWS s3 urls for the available granules in the granule
dictionary.

94 Chapter 11. icepyx Documentation (API Reference)

icepyx

icepyx.core.granules.info(grans)
Return some basic summary information about a set of granules for an query object. Granule info may be from
a list of those available from NSIDC (for ordering/download) or a list of granules present on the file system.

11.5.4 is2cat

11.5.5 is2ref

icepyx.core.is2ref.about_product(prod)
Ping Earthdata to get metadata about the product of interest (the collection).

See also:

query.Query.product_all_info

icepyx.core.is2ref.extract_product(filepath, auth=None)
Read the product type from the metadata of the file. Valid for local or s3 files, but must provide an auth object if
reading from s3. Return the product as a string.

Parameters

filepath: string
local or remote location of a file. Could be a local string or an s3 filepath

auth: earthaccess.auth.Auth, default None
An earthaccess authentication object. Optional, but necessary if accessing data in an s3
bucket.

icepyx.core.is2ref.extract_version(filepath, auth=None)
Read the version from the metadata of the file. Valid for local or s3 files, but must provide an auth object if
reading from s3. Return the version as a string.

Parameters

filepath: string
local or remote location of a file. Could be a local string or an s3 filepath

auth: earthaccess.auth.Auth, default None
An earthaccess authentication object. Optional, but necessary if accessing data in an s3
bucket.

icepyx.core.is2ref.gt2spot(gt, sc_orient)

icepyx.core.is2ref.latest_version(product)
Determine the most recent version available for the given product.

Examples

>>> latest_version('ATL03')
'006'

11.5. Components 95

icepyx

11.5.6 spatial

class icepyx.core.spatial.Spatial(spatial_extent, **kwarg)
Bases: object

property extent

Return the coordinates of the spatial extent of the Spatial object.

The result will be returned as an array. For input geometry files with multiple features, the boundary of the
the unary union of all features is returned.

Returns

spatial extent
[array] An array of bounding coordinates.

property extent_as_gdf

Return the spatial extent of the query object as a GeoPandas GeoDataframe.

Returns

extent_gdf
[GeoDataframe] A GeoDataframe containing the spatial region of interest.

property extent_file

Return the path to the geospatial polygon file containing the Spatial object’s spatial extent. If the spatial
extent did not come from a file (i.e. user entered list of coordinates), this will return None.

Examples

>>> reg_a = Spatial([-55, 68, -48, 71])
>>> reg_a.extent_file

>>> reg_a = Spatial(str(Path('./doc/source/example_notebooks/supporting_files/
→˓simple_test_poly.gpkg').resolve()))
>>> reg_a.extent_file
./doc/source/example_notebooks/supporting_files/simple_test_poly.gpkg

property extent_type

Return the extent type of the Spatial object as a string.

Examples

>>> reg_a = Spatial([-55, 68, -48, 71])
>>> reg_a.extent_type
'bounding_box'

>>> reg_a = Spatial([(-55, 68), (-55, 71), (-48, 71), (-48, 68), (-55, 68)])
>>> reg_a.extent_type
'polygon'

96 Chapter 11. icepyx Documentation (API Reference)

icepyx

fmt_for_CMR()

Format the spatial extent for NASA’s Common Metadata Repository (CMR) API.

CMR spatial inputs must be formatted a specific way. This method formats the given spatial extent to be
a valid submission. For large/complex polygons, this includes simplifying the polygon (NOTE: currently
not all polygons are simplified enough). Coordinates will be properly ordered, and the required string
formatting applied. For small regions, a buffer may be added.

Returns

string
Properly formatted string of spatial data for submission to CMR API.

fmt_for_EGI()

Format the spatial extent input into a subsetting key value for submission to EGI (the NSIDC DAAC API).

EGI spatial inputs must be formatted a specific way. This method formats the given spatial extent to be a
valid submission. DevGoal: For large/complex polygons, this includes simplifying the polygon. Coordi-
nates will be properly ordered, and the required string formatting applied.

Returns

string
Properly formatted json string for submission to EGI (NSIDC API).

icepyx.core.spatial.check_dateline(extent_type, spatial_extent)
Check if a bounding box or polygon input cross the dateline.

Parameters

extent_type
[string] One of ‘bounding_box’ or ‘polygon’, indicating what type of input the spatial extent
is

spatial_extent
[list] A list containing the spatial extent as coordinates in decimal degrees of [longitude1,
latitude1, longitude2, latitude2, . . . longitude_n,latitude_n, longitude1,latitude1].

Returns

boolean
indicating whether or not the spatial extent crosses the dateline.

icepyx.core.spatial.geodataframe(extent_type, spatial_extent, file=False, xdateline=None)
Return a geodataframe of the spatial extent

Parameters

extent_type
[string] One of ‘bounding_box’ or ‘polygon’, indicating what type of input the spatial extent
is

spatial_extent
[string or list] A list containing the spatial extent OR a string containing a filename. If
file is False, spatial_extent should be a list of coordinates in decimal degrees of [lower-left-
longitude, lower-left-latitute, upper-right-longitude, upper-right-latitude] or [longitude1, lat-
itude1, longitude2, latitude2, . . . longitude_n,latitude_n, longitude1,latitude1].

If file is True, spatial_extent is a string containing the full file path and filename to the file
containing the desired spatial extent.

11.5. Components 97

icepyx

file
[boolean, default False] Indication for whether the spatial_extent string is a filename or co-
ordinate list

Returns

gdf
[GeoDataFrame] Returns a GeoPandas GeoDataFrame containing the spatial extent. The
GeoDataFrame will have only one entry unless a geospatial file was submitted.

See also:

icepyx.Query

Examples

>>> reg_a = ipx.Query('ATL06',[-55, 68, -48, 71],['2019-02-20','2019-02-28'])
>>> gdf = geodataframe(reg_a.spatial.extent_type, reg_a.spatial.extent)
>>> gdf.geometry
0 POLYGON ((-48.00000 68.00000, -48.00000 71.000...
Name: geometry, dtype: geometry

icepyx.core.spatial.validate_bounding_box(spatial_extent)
Validates the spatial_extent parameter as a bounding box.

If the spatial_extent is a valid bounding box, returns a tuple containing the Spatial object parameters for the
bounding box; otherwise, throw an error containing the reason the bounding box is invalid.

Parameters

spatial_extent: list or np.ndarray
A list or np.ndarray of strings, numerics, or tuples representing bounding box coordinates in
decimal degrees.

Must be provided in the order: [lower-left-longitude, lower-left-latitude, upper-right-
longitude, upper-right-latitude])

icepyx.core.spatial.validate_polygon_file(spatial_extent)
Validates the spatial_extent parameter as a polygon from a file.

If the spatial_extent parameter contains a valid polygon, returns a tuple containing the Spatial object parameters
for the polygon;

otherwise, throw an error containing the reason the polygon/polygon file is invalid.

Parameters

spatial_extent: string
A string representing a geospatial polygon file (kml, shp, gpkg) * must provide full file path
* recommended for file to only contain 1 polygon.

• if multiple polygons, only the first polygon is selected at this time.

icepyx.core.spatial.validate_polygon_list(spatial_extent)
Validates the spatial_extent parameter as a polygon from a list of coordinates.

If the spatial_extent is a valid polygon, returns a tuple containing the Spatial object parameters for the polygon;

otherwise, throw an error containing the reason the polygon is invalid.

Parameters

98 Chapter 11. icepyx Documentation (API Reference)

icepyx

spatial_extent: list or np.ndarray
A list or np.ndarray of strings, numerics, or tuples representing polygon coordinates, pro-
vided as coordinate pairs in decimal degrees in the order: [longitude1, latitude1, longitude2,
latitude2, longitude_n,latitude_n, longitude1,latitude1]

If the first and last coordinate pairs are NOT equal, the polygon will be closed automatically
(last point will be connected to the first point).

icepyx.core.spatial.validate_polygon_pairs(spatial_extent)
Validates the spatial_extent parameter as a polygon from coordinate pairs.

If the spatial_extent is a valid polygon, returns a tuple containing the Spatial object parameters for the polygon;

otherwise, throw an error containing the reason the polygon is invalid.

Parameters

spatial_extent: list or np.ndarray
A list or np.ndarray of tuples representing polygon coordinate pairs in decimal degrees in
the order: [(longitude1, latitude1), (longitude2, latitude2), (longitude_n,latitude_n),
(longitude1,latitude1)]

If the first and last coordinate pairs are NOT equal, the polygon will be closed automatically
(last point will be connected to the first point).

11.5.7 temporal

class icepyx.core.temporal.Temporal(date_range, start_time=None, end_time=None)
Bases: object

property end

Return the end date and time of the Temporal object as a datetime.datetime object.

Examples

>>> tmp_a = Temporal(["2016-01-01", "2020-01-01"])
>>> tmp_a.end
datetime.datetime(2020, 1, 1, 23, 59, 59)

property start

Return the start date and time of the Temporal object as a datetime.datetime object.

Examples

>>> tmp_a = Temporal(["2016-01-01", "2020-01-01"])
>>> tmp_a.start
datetime.datetime(2016, 1, 1, 0, 0)

icepyx.core.temporal.check_valid_date_range(start, end)
Helper function for checking if a date range is valid.

AssertionError is raised if the start date is later than the end date.

Parameters

11.5. Components 99

icepyx

start: datetime.datetime, datetime.date
Starting date of date range to check.

end: datetime.datetime, datetime.date
Ending date of date range to check

Returns

boolean (true if date range is valid, false otherwise)

Examples

>>> start = dt.datetime.strptime("2016-01-01", "%Y-%m-%d")
>>> end = dt.datetime.strptime("2020-01-01", "%Y-%m-%d")
>>> drange = check_valid_date_range(start, end)
>>> drange

>>> drange = check_valid_date_range(end, start)
AssertionError: Your date range is invalid; end date MUST be on or after the start␣
→˓date.

icepyx.core.temporal.convert_string_to_date(date)
Converts a string to a datetime object. Throws an error if an invalid format is passed in.

Parameters

date: string

A string representation for the date value. Current supported date formats are:

• “YYYY-MM-DD”

• “YYYY-DOY”

Returns

datetime.date object, representing the date from the string parameter.

Examples

>>> mmdd = "2016-01-01"
>>> converted = convert_string_to_date(mmdd)
>>> converted
datetime.date(2016, 1, 1)

>>> doy = "2020-40"
>>> converted = convert_string_to_date(doy)
>>> converted
datetime.date(2020, 2, 9)

icepyx.core.temporal.validate_date_range_date(date_range, start_time=None, end_time=None)
Validates a date range provided in the form of a list of datetime.date objects.

Combines the start and end dates with their respective start and end times to create complete start and end
datetime.datetime objects.

Parameters

100 Chapter 11. icepyx Documentation (API Reference)

icepyx

date_range: list(str)
A date range provided in the form of a list of datetime.dates. List must be of length 2.

start_time: string or datetime.time
end_time: string or datetime.time

Returns

Start and end datetimes as datetime.datetime objects

Examples

>>> drange = [dt.date(2016, 1, 1), dt.date(2020, 1, 1)]
>>> valid_drange = validate_date_range_date(drange, "00:10:00", "21:00:59")
>>> valid_drange
(datetime.datetime(2016, 1, 1, 0, 10), datetime.datetime(2020, 1, 1, 21, 0, 59))

icepyx.core.temporal.validate_date_range_datestr(date_range, start_time=None, end_time=None)
Validates a date range provided in the form of a list of strings.

Combines the start and end dates with their respective start and end times to create complete start and end
datetime.datetime objects.

Parameters

date_range: list(str)

A date range provided in the form of a list of strings
Strings must be of formats accepted by validate_inputs_temporal.convert_string_to_date().
List must be of length 2.

start_time: string, datetime.time, None
end_time: string, datetime.time, None

Returns

Start and end dates and times as datetime.datetime objects

Examples

>>> daterange = validate_date_range_datestr(["2016-01-01", "2020-01-01"])
>>> daterange
(datetime.datetime(2016, 1, 1, 0, 0), datetime.datetime(2020, 1, 1, 23, 59, 59))

icepyx.core.temporal.validate_date_range_datetime(date_range, start_time=None, end_time=None)
Validates a date range provided in the form of a list of datetimes.

Parameters

date_range: list(datetime.datetime)
A date range provided in the form of a list of datetimes. List must be of length 2.

start_time: None, string, datetime.time
end_time: None, string, datetime.time
NOTE: If start and/or end times are given,
they will be **ignored in favor of the time from the start/end datetime.datetime objects.**

Returns

11.5. Components 101

icepyx

Start and end dates and times as datetime.datetime objects

Examples

>>> drange = [dt.datetime(2016, 1, 14, 1, 0, 0), dt.datetime(2020, 2, 9, 13, 10, 1)]
>>> valid_drange = validate_date_range_datetime(drange)
>>> valid_drange
(datetime.datetime(2016, 1, 14, 1, 0), datetime.datetime(2020, 2, 9, 13, 10, 1))

icepyx.core.temporal.validate_date_range_dict(date_range, start_time=None, end_time=None)
Validates a date range provided in the form of a dict with the following keys:

Parameters

date_range: dict(str, datetime.datetime, datetime.date)
A date range provided in the form of a dict. date_range must contain only the following keys:

• start_date: start date, type can be of dt.datetime, dt.date, or string

• end_date: end date, type can be of dt.datetime, dt.date, or string

Keys MUST have the exact names/formatting above or a ValueError will be thrown by this
function.

If the values are of type dt.datetime and were created without times, the datetime package
defaults of all 0s are used and the start_time/end_time parameters will be ignored!

start_time: string or datetime.time
end_time: string or datetime.time

Returns

Start and end datetimes as datetime.datetime objects
(by combining the start/end dates with their respective start/end times, if the dict type is
not datetime)

Examples

>>> drange = {"start_date": "2016-01-01", "end_date": "2020-01-01"}
>>> valid_drange = validate_date_range_dict(drange, "00:00:00", "23:59:59")
>>> valid_drange
(datetime.datetime(2016, 1, 1, 0, 0), datetime.datetime(2020, 1, 1, 23, 59, 59))

icepyx.core.temporal.validate_times(start_time, end_time)
Validates the start and end times passed into __init__ and returns them as datetime.time objects.

NOTE: If start and/or end times are not provided (are of type None), the defaults are 00:00:00 and 23:59:59,
respectively.

Parameters

start_time: string, datetime.time, None
end_time: string, datetime.time, None

Returns

start_time, end_time as datetime.time objects

102 Chapter 11. icepyx Documentation (API Reference)

icepyx

Examples

>>> val_time = validate_times("00:00:00", "23:59:59")
>>> val_time
(datetime.time(0, 0), datetime.time(23, 59, 59))

11.5.8 validate_inputs

icepyx.core.validate_inputs.check_s3bucket(path)
Check if the given path is an s3 path. Raise a warning if the data being referenced is not in the NSIDC bucket

icepyx.core.validate_inputs.cycles(cycle)
Check if the submitted cycle is valid, and warn the user if not available.

icepyx.core.validate_inputs.prod_version(latest_vers, version)
Check if the submitted product version is valid, and warn the user if a newer version is available.

icepyx.core.validate_inputs.tracks(track)
Check if the submitted RGT is valid, and warn the user if not available.

11.5.9 visualize

Interactive visualization of spatial extent and ICESat-2 elevations

class icepyx.core.visualization.Visualize(query_obj=None, product=None, spatial_extent=None,
date_range=None, cycles=None, tracks=None)

Bases: object

Object class to quickly visualize elevation data for select ICESat-2 products (ATL06, ATL07, ATL08, ATL10,
ATL12, ATL13) based on the query parameters defined by the icepyx Query object. Provides interactive maps
that show product elevation on a satellite basemap.

Parameters

query_obj
[ipx.Query object, default None] icepy Query class object.

product
[string] ICESat-2 product ID

spatial_extent: list or string, default None
as in the ipx.Query object

date_range
[list of ‘YYYY-MM-DD’ strings, default None] as in the ipx.Query object

cycle
[string, default all available orbital cycles, default None] as in the ipx.Query object

track
[string, default all available reference ground tracks (RGTs), default None] as in the
ipx.Query object

See also:

ipx.Query

11.5. Components 103

icepyx

generate_OA_parameters()→ list
Get metadata from file lists in each 5*5 bounding box.

Returns

paras_list
[list] A list of parameters for OpenAltimetry API query, including the reference ground
track (RGT), cycle number, datetime, bounding box, and product name.

grid_bbox(binsize=5)→ list
Split bounding box into 5 x 5 grids when latitude/longitude range exceeds the default OpenAltimetry 5*5
degree spatial limits

Returns

bbox_list
[list] A list of bounding boxes with a maximum size of 5*5 degree

make_request(base_url, payload)
Make HTTP request

Parameters

base_url
[string] OpenAltimetry URL

See also:

request_OA_data

parallel_request_OA()→ array
Requests elevation data from OpenAltimetry API in parallel. Currently supports OA_Products
[‘ATL06’,’ATL07’,’ATL08’,’ATL10’,’ATL12’,’ATL13’]

For ATL03 Photon Data, OA only supports single date request according to: https://openaltimetry.org/data/
swagger-ui/#/Public/getATL08DataByDate, with geospatial limitation of 1 degree lat/lon. Visualization of
ATL03 data is not implemented within this module at this time.

Returns

OA_data_da
[dask.Array] A dask array containing the ICESat-2 data.

query_icesat2_filelist()→ tuple
Query list of ICESat-2 files for each bounding box

Returns

filelist_tuple
[tuple] A tuple of non-empty lists of bounding boxes and corresponding ICESat-2 file lists

request_OA_data(paras)→ array
Request data from OpenAltimetry based on API: https://openaltimetry.org/data/swagger-ui/#/

Parameters

paras
[list] A single parameter list for an OpenAltimetry API data request.

Returns

OA_darr
[da.array] A dask array containing the ICESat-2 elevation data.

104 Chapter 11. icepyx Documentation (API Reference)

https://openaltimetry.org/data/swagger-ui/#/Public/getATL08DataByDate
https://openaltimetry.org/data/swagger-ui/#/Public/getATL08DataByDate
https://openaltimetry.org/data/swagger-ui/#/

icepyx

viz_elevation() -> (<class 'holoviews.core.spaces.DynamicMap'>, <class
'holoviews.core.layout.Layout'>)

Visualize elevation requested from OpenAltimetry API using datashader based on cycles https://holoviz.
org/tutorial/Large_Data.html

Returns

map_cycle, map_rgt + lineplot_rgt
[Holoviews objects] Holoviews data visualization elements

icepyx.core.visualization.files_in_latest_n_cycles(files, cycles, n=1)→ list
Get list of file names from latest n ICESat-2 cycles

Parameters

files
[list] A list of file names.

cycles: list
A list of available ICESat-2 cycles

n: int, default 1
Number of latest ICESat-2 cycles to pick

Returns

viz_file_list
[list] A list of file names from latest n ICESat-2 cycles

icepyx.core.visualization.gran_paras(filename)→ list
Returns a list of granule information for file name string.

Parameters

filename: String
ICESat-2 file name

Returns

gran_paras_list
[list] A list of parameters including RGT, cycle, and datetime of ICESat-2 data granule

icepyx.core.visualization.user_check(message)
Check if user wants to proceed visualization when the API request number exceeds 200

Parameters

message
[string] Message to indicate users the options

11.5. Components 105

https://holoviz.org/tutorial/Large_Data.html
https://holoviz.org/tutorial/Large_Data.html

icepyx

106 Chapter 11. icepyx Documentation (API Reference)

CHAPTER

TWELVE

ICEPYX CHANGELOG

This is the list of changes made to icepyx in between each release. Full details can be found in the commit logs.

12.1 Latest Release (Version 1.0.0)

12.1.1 What’s new in 1.0.0 (5 January 2024)

These are the changes in icepyx 1.0.0 See icepyx ChangeLog for a full changelog including other versions of icepyx.

New (and Updated) Features

• update Read input arguments (#444)

– add filelist and product properties to Read object

– deprecate filename_pattern and product class Read inputs

– transition to data_source input as a string (including glob string) or list

– update tutorial with changes and user guidance for using glob

• enable QUEST kwarg handling (#452)

– add kwarg acceptance for data queries and download_all in quest

– Add QUEST dataset page to RTD

• Variables as an independent class (#451)

– Refactor Variables class to be user facing functionality

• Expand Variables class to read s3 urls (#464)

– expand extract_product and extract_version to check for s3 url

– add cloud notes to variables notebook

• add argo functionality to QUEST (#427)

– add argo.py dataset functionality and implementation through QUEST

– demonstrate QUEST usage via example notebook

– add save to QUEST DataSet class template

• Expand icepyx to read s3 data (#468)

107

https://github.com/icesat2py/icepyx/commits

icepyx

Bug fixes

• temporarily disable OpenAltimetry API tests (#459)

– add OA API warning

– comment out tests that use OA API

• fix spot number calculation (#458)

• Update read module coordinate dimension manipulations to use new xarray index (#473)

• Fix behind EDL tests (#480)

• fix permissions for publishing to pypi (#487)

Deprecations

• deprecate filename_pattern and product class Read inputs (#444)

• remove file input arg and _source property from query (and improve some formatting) (#479)

Maintenance

• update QUEST and GenQuery classes for argo integration (#441)

• format all code files using black (#476)

• update tests to data version 006 and resolve flake8 errors on edited files (#478)

• update github actions and add black linter for PRs (#475)

– update pypi action to use OIDC trusted publisher mgmt

– generalize the flake8 action to a general linting action and add black

– put flake8 config parameters into a separate file (.flake8)

– update versions of actions/pre-commit hooks

– specify uml updates only need to run on PRs to development

– do not run uml updates on PRs into main #449)

– update docs config files to be compliant

– temporarily ignore many flake8 error codes until legacy files are updated

• Convert deprecation warnings to errors and remove associated checks #482

Documentation

• Fix a broken link in IS2_data_access.ipynb (#456)

• docs: add rwegener2 as a contributor for bug, code, and 6 more (#460)

• docs: add jpswinski as a contributor for review (#461)

• docs: add whyjz as a contributor for tutorial (#462)

• add newest icepyx citations (#455)

• traffic updates Aug-Dec 2023 (#477)

108 Chapter 12. icepyx ChangeLog

icepyx

• docs: add lheagy as a contributor for mentoring, and review (#481)

• docs: add rtilling as a contributor for ideas (#484)

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

• Kelsey Bisson

• Zach Fair

• Romina Piunno

12.2 Version 0.8.1

12.2.1 What’s new in 0.8.1 (14 November 2023)

These are the changes in icepyx 0.8.1 See icepyx ChangeLog for a full changelog including other versions of icepyx.

Bug fixes

• fix the ATL08 delta_time dimension read error (#470)

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.3 Version 0.8.0

12.3.1 What’s new in 0.8.0 (12 September 2023)

These are the changes in icepyx 0.8.0 See icepyx ChangeLog for a full changelog including other versions of icepyx.

New Features

• create temporal module and add input types and testing (#327)

– create temporal module

– create temporal testing module

– add support for more temporal input types (datetime objects) and formats (dict)

– temporal docstring, user guide updates

– updated example notebook for new temporal inputs

– update temporal info in data access tutorial example notebook

– GitHub action UML generation auto-update

• Refactor authentication (#435)

12.2. Version 0.8.1 109

icepyx

– modularize authentication using a mixin class

– add docstrings and update example notebooks

– add tests

• add atl23 (new product) to lists and tests (#445)

Deprecations

• Remove intake catalog from Read module (#438)

– delete is2cat.py and references

– remove intake and related modules

• Raise warning for use of catalog in Read module (#446)

Maintenance

• update codecov action and remove from deps (#421)

• is2ref tests for product formatting and default var lists (#424)

• get s3urls for all data products and update doctests to v006 (#426)

– Always send CMR query to provider NSIDC_CPRD to make sure s3 urls are returned.

• Traffic updates 2023 Feb-Aug (#442)

Documentation

• update install instructions (#409)

– add s3fs as requirement to make cloud access default

– transition to recommending mamba over conda

• add release guide to docs (#255)

• docs maintenance and pubs/citations update (#422)

– add JOSS to bib and badges

– switch zenodo links to nonversioned icepyx

Other

• JOSS submission (#361)

Matches Release v0.6.4_JOSS per #420 plus a few editorial edits available via the pubs/joss branch.

• update and clarify authorship, citation, and attribution policies (#419)

– add CITATION.cff file

– update citation docs with Zenodo doi and ‘icepyx Developers’ as author

110 Chapter 12. icepyx ChangeLog

icepyx

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.4 Version 0.7.0

12.4.1 What’s new in 0.7.0 (20 March 2023)

These are the changes in icepyx 0.7.0 See icepyx ChangeLog for a full changelog including other versions of icepyx.

New Features

• transition icepyx to using earthaccess library for authentication (#410)

– add earthaccess (formerly earthdata) as dependency

– remove Earthdata module

– update earthdata_login function to use earthaccess

– update data access and other example notebooks

– update earthdata and NSIDC login tests

– simplify cloud access example auth handling using earthaccess

Bug fixes

• update read-in module for ATL11 (#398)

– remove sc_orient from atl11 required vars list

– introduce new function to determine if data product uses ground tracks, paths, or profiles and generalize
code accordingly

– add some custom treatments for 2d delta_times and cases when there is a gt and spot

– add atl11 path parsing and docs

– handle merging given non-unique ref_pt coordinates

• change simplify to preserve topology (#404)

• update oa viz for polygons after spatial module change (#390)

– reactivate atl10 and atl12 viz tests and update sizes

– disable ATL13 viz tests

• manual solution for getting ATL15 s3 urls via icepyx (#413)

• fix NSIDC login tests (#418)

12.4. Version 0.7.0 111

icepyx

Deprecations

• icepyx.core.earthdata module

Maintenance

• update license and copyright info (#408)

• update uml action to not install requirements (#406)

• update traffic data and action (#401)

– add updating pip and upgrading pypistats to gh action

• update tracking data and actions (#393)

– update action versions in github workflows

– only pip install needed packages instead of all requirements

Documentation

• add ravindraK08 as a contributor for review (#405)

• add icesat2py clarification note (#395)

• update contact page - discontinue regular meetings (#396)

• add JOSS and update conda badges (#388)

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.5 Version 0.6.4

12.5.1 What’s new in 0.6.4 (28 October 2022)

These are the changes in icepyx 0.6.4 See icepyx ChangeLog for a full changelog including other versions of icepyx.

New Features

• create spatial class, automatic polygon closure functionality (#322)

• add cross-date line flag and handling (including in function to create geodataframe) (#331)

112 Chapter 12. icepyx ChangeLog

icepyx

Bug fixes

• fixed several geospatial/cross-date line issues (see New Features)

Deprecations

• in ipx.Query.avail_granules and ipx.core.granules.gran_IDs, the s3urls keyword has been changed to cloud.

Maintenance

• add existing contributors using the AllContributors bot (#332-333, #335-360, #365-368, #370-371)

• clean up after adding all contribs via bot (#334)

• add provider flag to CMR request (needed with new cloud availability) (#380)

• update traffic data and scripts (#363, #369, #383)

• enable support for Python 3.10 and 3.11 (#372)

• update json file with subsetting options to v005 of ATL06 (#387)

Documentation

• update bib file and contribs formatting (#364)

• update cloud tutorial to work with publicly accessible cloud data (#381)

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.6 Version 0.6.3

12.6.1 What’s new in 0.6.3 (28 July 2022)

These are the changes in icepyx 0.6.3 See icepyx ChangeLog for a full changelog including other versions of icepyx.

New Features

• create merge index during data read-in (#305)

– implement photon_id index (commented) and linear photon_idx

• add all contributors bot

• start adding other contributors with bot and debug allcontributors setup (#314)

12.6. Version 0.6.3 113

icepyx

Bug fixes

• address readable_granule_name implementation error (#292)

– place one order per granule_id rather than submitting a list

Maintenance

• functionize numpy datetime conversion (#305)

Documentation

• Tracking docs updates (#307)

– change citation heading to ‘citing icepyx’ for clarity

– separate downloads and citations in tracking section

– add no-tracking note

• simplify and update development plan (#306)

– simplify and update development plan

– note we’ve not activated discussions

– fix IceFlow link in citations file

• add how-to guide and clarify contributions in icepyx docs (#319)

– added text to include ancillary data within icepyx

– added Jupyer notebook considerations

– added GitHub instructions for new users

– added development panel on landing page

– Edited contribution guidelines

– created how to develop file

This file focuses on the basic introductory GitHub steps as well as best practices with code and working
with icepyx locally

– added contribution links, and QUEST idea

Added in text links for the contribution page, as well as a placeholder for ‘adding an ancillary dataset’
to the contribution page. Will need to add a link for a tutorial on ‘how to add a dataset’ in an upcoming
release.

– add other hackweek repos

– allcontrib bot and simplify instructions

114 Chapter 12. icepyx ChangeLog

icepyx

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.7 Version 0.6.2

12.7.1 What’s new in 0.6.2 (17 March 2022)

These are the changes in icepyx 0.6.2. See icepyx ChangeLog for a full changelog including other versions of icepyx.

Bug fixes

• debug behind login Travis CI tests (#291)

• manually remove ‘z’ from datetime string (#294)

Maintenance

• update action add-and-commit v8 and remove branch/ref keywords (#290)

• add read-in functionality for deeply nested variables (e.g. ATL08) (#281)

• icepyx tracking (traffic and pypi) updates (#295)

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.8 Version 0.6.0 + 0.6.1

12.8.1 What’s new in 0.6.0 (4 March 2022)

These are the changes in icepyx 0.6.0 (0.6.1) See icepyx ChangeLog for a full changelog including other versions of
icepyx.

Release 0.6.0 turned into release 0.6.1 due to a tagging + timing issue where the last pull request was merged after the
tag was created. Increasing the version to 0.6.1 enabled us to quickly troubleshoot and fix our available builds, but a
new release log was not created.

New Features

• add ability to only order one page by specifying ‘page-num’ (#87)

• add environmental variable option for Earthdata credentials (#200)

• Super query - turn Query into a superclass called GenQuery (#249)

• Update or skip all existing docstring tests (#259)

– add docstring tests to pytest ini

12.7. Version 0.6.2 115

icepyx

• splashy front page (#260)

• QUEST (Query_Unify_Explore_SpatioTemporal) - Colocated data framework (#273)

– Introduce framework to implement icepyx functionality (query & download) to other data sets

Bug fixes

• update docstring test config params (#256)

• update commit action version in traffic action and data (#258)

• update OA data sizes for CI tests (#262)

• comment out tests failing due to OA issue (#268)

Maintenance

• use Cmr-search-after instead of paging (#87)

• minor tweaks for gridded product access (#276)

– check if data product is gridded before parsing filename for gran_IDs

– update required inputs for query object based on product

– add try to variables module for gridded products required variables list

Documentation

• Use MyST-NB to render jupyter notebook and markdown files and other docs fixes (#196)

• automate pypi statistics tracking and figure updates

• clarify which branch badges in README point to (#267)

• improve example notebooks in docs (#265)

– Turn examples into a dedicated section

– update and standardize example headings and levels

– update notebook links to rtd rendering (from GH)

– add download links to example notebooks

• Update readthedocs build dependencies (#261)

• Updating ICESat-2 Resources Pages (#263)

– Updated resource guides

– Created separate resource pages

116 Chapter 12. icepyx ChangeLog

icepyx

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.9 Version 0.5.0

12.9.1 What’s new in 0.5.0 (8 December 2021)

These are the changes in icepyx 0.5.0 See icepyx ChangeLog for a full changelog including other versions of icepyx.

New Features

• Add ICESat-2 data read-in functionality (#222) * includes read module and is2cat (catalog) module, example
notebook, and docs * basic tests file for read module validation functions * add basic build catalog function to
read data object * add ability to get list of variables from a file * add variables example notebook; trim variables
module details out of subsetting example * update examples from 2020 Hackweek tutorials

• preliminary AWS access (#213) * add basic cloud data access capabilities * add weak check for AWS instance

Bug fixes

• Fix failing test_visualization_date_range check for ATL07 (#241)

• remove extra cell causing errors in example notebook

Deprecations

• None

Maintenance

• add github action to add binder badge to PRs (#229 and #233)

• update links for travis badge (#234)

• changed pytest to run in verbose mode so that it is more clear which parametrized test is failing.

• By default, no email status updates to users when ordering granules (#240)

• Set default page size for orders to 2000 per NSIDC recommendation (#239)

• update add and commit GitHub Action version (#244)

• update citation list and traffic/download data (#245)

12.9. Version 0.5.0 117

icepyx

Documentation

• GitHub action UML generation auto-update (#244)

Other

• None

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.10 Version 0.4.1

12.10.1 What’s new in 0.4.1 (01 December 2021)

These are the changes in icepyx 0.4.1 See icepyx ChangeLog for a full changelog including other versions of icepyx.

New Features

• GitHub action to automatically update uml diagrams (#208)

Bug fixes

• check errors raised by empty query object from bounding box split in openaltimetry visualization (#220)

• updated product_summary_info function to latest fields returned by CMR (product_id –> title)

Deprecations

• query.dataset is now deprecated in favor of query.product.

Maintenance

• improved variable naming for clarity and in line with common usage (#211)

• add tests that require an active NSIDC Earthdata session (#209)

• update tracking metrics and limit traffic action to parent repo (#221)

• remove extra code block from example notebook (#225)

118 Chapter 12. icepyx ChangeLog

icepyx

Documentation

• improve query docstrings (#212)

Other

• add research notice to readme (#206)

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.11 Version 0.4.0

12.11.1 What’s new in 0.4.0 (13 May 2021)

These are the changes in icepyx 0.4.0. See icepyx ChangeLog for a full changelog including other versions of icepyx.

New Features

• use geoviews to visualize query spatial extent interactively when possible (#176)

• add ability to search by orbital parameters (RGT, cycle) (#148)

• pre-download elevation data visualization with OpenAltimetry API (#144)

Bug fixes

• Fix Sphinx warnings related to whitespace (#197)

Maintenance

• apply black formatting (#201)

• improvements to formatting and management of request parameters (use strings to prevent url formatting)

Documentation

• Added Conda and pip badges (#198)

• New example to showcase new visualization module

12.11. Version 0.4.0 119

icepyx

Other

• Add geoviews as extra optional dependency in setup.py (#193)

• Bulk rename master to main (#194)

• surface NSIDC order and http download errors more effectively to user (#195)

• switch to using a miniconda environment install for travis testing

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.12 Version 0.3.4

12.12.1 What’s new in v0.3.4 (23 March 2021)

These are the changes in icepyx 0.3.4 See icepyx ChangeLog for a full changelog including other versions of icepyx.

New Features

• None

Bug fixes

• None

Deprecations

• None

Maintenance

• fix read the docs build with automatic versioning (#182)

• update tracking metrics and automate github action figure updates (#184)

Documentation

• Add quick instructions for installing icepyx via conda (#187)

120 Chapter 12. icepyx ChangeLog

icepyx

Other

• None

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.13 Version 0.3.3

12.13.1 What’s new in v0.3.3 (11 March 2021)

These are the changes in icepyx 0.3.3 See icepyx ChangeLog for a full changelog including other versions of icepyx.

New Features

• Add ability to access ATL11 Annual Land Ice Height data (#161)

Bug fixes

• re-fix socket error (#163)

Deprecations

• None

Maintenance

• Update .gitignore (#180)

• add second requirements file to rtd.yml (#178)

• add manifest and update requirements files pre-conda-forge release (#175)

• Setup GitHub Action for publishing to PyPI and TestPyPI (#174)

• Add automatic versioning and required files (#168)

• add bib file to RTD configuration (#164)

Documentation

• None

12.13. Version 0.3.3 121

icepyx

Other

• Add automatic versioning and required files (#168)

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.14 Version 0.3.2

12.14.1 What’s new in v0.3.2 (1 December 2020)

This is a summary of the changes in icepyx v0.3.2. See icepyx ChangeLog for a full changelog including other versions
of icepyx. Note that during this time period we transitioned to master + development branches, with mandatory squash
commits to the development branch from working branches in order to simplify the git history.

New Features

• tracking tools set up

• bibliography of icepyx uses

Bug fixes

• resolve normal projection KeyError that resulted from a DAAC change to capabilities.xml

• allow and validate numpy inputs for query objects

Deprecations

• None

Maintenance

• update Travis trigger to test PRs submitted from forks

Documentation

• section on tracking and usage statistics

• add current path to pip install -e instructions

122 Chapter 12. icepyx ChangeLog

icepyx

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.15 Version 0.3.1

12.15.1 What’s new in v0.3.1 (10 September 2020)

This is a summary of the changes in icepyx v0.3.1. See icepyx ChangeLog for a full changelog including other versions
of icepyx. Note that during this time period we transitioned to master + development branches, with mandatory squash
commits to the development branch from working branches in order to simplify the git history.

New Features

• allow data querying using tracks and cycles

• transition to use of query class object

• add Black pre-commit hook and flake8 for code formatting and style consistency

• created a development branch, enabling master to be the stable release branch

• add icepyx release to PyPI, thereby enabling non-dev installs with pip

• add code coverage badge for testing

• enable alternative Earthdata authentication with netrc

• automatically unzip downloaded files into a single directory

• save order IDs and enable restart of download for previously ordered data

• option to suppress order status emails from NSIDC

• display variables in a dictionary format

• overall, the variables class was overhauled: generalized, improved, and tested

Bug fixes

• update bounding box assertions to allow crossing dateline

• add try/except for gaierror

• automatically order polygon vertices properly for submission to CMR and NSIDC APIs

• fix index error due to NSIDC metadata changes

• skip straight to variable subsetting without needing to manually run data search first

12.15. Version 0.3.1 123

icepyx

Deprecations

• icesat2data class is deprecated. The existing functionality to search and obtain data has been migrated to the
query class. A new class will be created for subsequent steps of working with data.

• inclusive flag for variable.append and variable.remove methods has been removed

Maintenance

• add PyPI building to Travis for new releases

• update class architecture diagram and add to documentation page

• refactor test suite into multiple modules

Documentation

• update and improve installation instructions (especially for Windows users)

• review and update all docstrings (including examples)

• move examples to top level directory for easy finding (and make development notebooks harder to find)

• create subsetting workflow example Jupyter noteobok

• improve explanations in introductory example notebook

• reorganized documentation structure to be more intuitive (and categorized)

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.16 Version 0.2-alpha

12.16.1 What’s new in v0.2-alpha (6 May 2020)

These are the changes in pandas v0.2-alpha See icepyx ChangeLog for a full changelog including other versions of
icepyx.

New Features

• Ongoing work to refactor the icesat2data class into a more pythonic, modular structure

– Create Earthdata login class object and call as an attribute of an icesat2data object

– Move API (NSIDC and CMR) formatting functions to a separate module, APIformatting

– Create ICESat-2 reference function module, is2ref

– Create Granules class to get/order/download granules and call as an attribute of the icesat2data object

– Create Variables class to interface with ICESat-2 nested variables

– Create Parameters class for managing API inputs within APIformatting module

124 Chapter 12. icepyx ChangeLog

icepyx

• allow installation with pip and git

Bug fixes

• Polygon handling will now put polygon coordinates into the correct order for submitting to CMR API

Deprecations

• icesat2data class was refactored - access to some functionality changed

Maintenance

• Update examples to work with refactored code

• Update and expand tests for refactored code

Documentation

• Generate and include a UML diagram

• Update documentation to reflect refactored code

– Separate into icesat2data API and component classes

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

12.17 Version 0.1-alpha

12.17.1 What’s new in v0.1-alpha (7 April 2020)

This was the first official “release” of icepyx, after it had been in development since Fall 2019.

This changelog captures the general features of icepyx functionality at the time of this initial release, rather than pro-
viding a detailed account of all development steps and changes that were made.

Features

• Functionality to query and order data from NSIDC using their built-in API and NASA’s CMR API

• Visualization of input spatial parameters

• Enable subsetting using NSIDC subsetter

• Variable and variable path viewing and manipulation

• Set up continuous integration testing with Travis

12.17. Version 0.1-alpha 125

icepyx

Bug fixes

• No known bugs at release

Deprecations

• is2class became icesat2data

Documentation

• Example usage notebooks - using icepyx to access ICESat-2 data - subsetting using the NSIDC subsetter - com-
paring ATLAS altimeter and DEM data in Colombia

• Generate documentation using Sphinx and automate building/updating to ReadtheDocs

Other

• Develop attribution and contribution guidelines

• Provide ICESat-2 Resources Guide

Contributors

A total of 0 people contributed to this release. People with a “+” by their names contributed for the first time.

126 Chapter 12. icepyx ChangeLog

CHAPTER

THIRTEEN

PROJECT CONTRIBUTORS

The following people have made contributions to the project (in alphabetical order) and are considered “The icepyx
Developers”. Thanks goes to these wonderful people (emoji key):

This project follows the all-contributors specification. Contributions of any kind welcome!

127

https://allcontributors.org/docs/en/emoji-key
https://github.com/all-contributors/all-contributors

icepyx

128 Chapter 13. Project Contributors

CHAPTER

FOURTEEN

CONTRIBUTION GUIDELINES

Thank you for your interest in contributing to icepyx! We welcome and invite contributions of any size from anyone at
any career stage and with any amount of coding experience. Since this is a community-based project, we’re thankful
for your contributions to the utility and success of this project.

Here we provide a set of guidelines and information for contributing to icepyx. This project is released with a Contrib-
utor Code of Conduct. By participating in this project you agree to abide by its terms.

14.1 Ways to Contribute

• Share your use cases and examples (as Jupyter Notebooks, scripts, etc.)

• Submit bug reports and feature requests

• Write code for everyone to use

• Fix typos

• Improve documentation and testing

The best way to report a problem, request a feature, find out if others are working on a similar problem or application,
or let us know you’d like to contribute is to find the Issues tab and check if your problem/suggestion has already been
reported. If so, please provide any additional information in the ongoing discussion. Otherwise, feel free to create a
new issue and submit your problem or suggestions.

14.2 Requesting a Feature

Find the Issues tab at the top of GitHub repository and click the New Issue button. Please give your suggestion a clear
title and let us know if this is something you’d like to work on and contribute.

14.3 Reporting a Bug

Find the Issues tab at the top of GitHub repository and click the New Issue button. Give your issue a clear title and de-
scribe the steps required to recreate it in as much detail as possible. If you can, include a small example that reproduces
the error. More information and minimal examples will help us resolve issues faster.

129

../../../code_of_conduct.md

icepyx

14.4 Questions and Help

Please do not create issues to ask for help. A faster way to reach the community is through our Science/ICESat-2
subcategory on the Pangeo discourse page. We are excited to have you join an existing conversation or start a new post!
Please note that a GitHub login is required to post on the discourse page.

14.4.1 Other Resources

• Check out our ICESat-2 Open-Source Resources Guide for a host of tools and code for getting and working with
ICESat-2 data

• A great set of interactive tutorials for learning and practicing using git

• Let us know about the helpful tools you’ve found (Questions and Help)!

14.5 Adding Examples

We are delighted you’d like to contribute your icepyx example! Examples may be in the form of executable scripts or
interactive Jupyter Notebooks. Please make sure that each example has a descriptive name so someone not familiar
with your project understands its general behavior. Fully working examples should be submitted using a pull request
to the “development” branch, following the steps outlined below for Contributing Code.

14.6 Contributing Code

We follow a standard git workflow for code changes and additions. All submitted code, including our own, goes
through the pull request process; no changes are pushed directly to the main or development branches. This allows our
continuous integration (testing) process to ensure that the code is up to our standards and passes all of our tests (i.e.
doesn’t break what’s already there and working). By having a development branch for daily work, we enable the main
branch to remain stable between releases even as new features are being added.

14.6.1 First Steps

Before you begin writing code, please first check out our issues page. Someone may already be working on the same
problem, and you may be able to contribute directly to their efforts. If not, create a new issue to describe what you plan
to do.

14.6.2 General Guidelines

• Make each pull request as small and simple as possible. Unrelated changes should be submitted as multiple pull
requests.

• Larger changes should be broken down into their basic components and integrated separately.

• Bug fixes should be their own pull requests.

• Do not commit changes to files irrelevant to your pull request, such as .gitignore

• Write descriptive commit and pull request messages. Someone looking at the code a decade from now should
know what you worked on from your commit message.

• Be kind and encouraging to all contributors; be willing to accept constructive criticism to improve your code.

130 Chapter 14. Contribution Guidelines

https://discourse.pangeo.io/c/science/icesat-2/16
https://learngitbranching.js.org
https://github.com/icesat2py/icepyx

icepyx

• Review of pull requests takes time, particularly if the pull request is large and/or the commit messages are am-
biguous.

14.6.3 Basic Steps to Contribute

We encourage users to follow the git pull request workflow. For more detailed steps, please see How to Contribute.

14.6.4 Licensing

icepyx is licensed under the BSD-3 license. Contributed code will also be licensed under BSD-3. If you did not
write the code yourself, it is your responsibility to ensure that the existing license is compatible and included in the
contributed files or you have documented permission from the original author to relicense the code.

14.7 Improving Documentation and Testing

Found a typo in the documentation or have a suggestion to make it clearer? Consider letting us know by creating an
issue or (better yet!) submitting a fix. This is a great, low stakes way to practice the pull request process!

Discovered a currently untested case? Please share your test, either by creating an issue or submitting a pull request to
add it to our suite of test cases.

14.8 Attribution for Contributions

We appreciate any and all contributions made to icepyx, direct or indirect, large or small. To learn more about how you
will be recognized for your contributions, please see our Attribution Guidelines.

14.7. Improving Documentation and Testing 131

https://www.asmeurer.com/git-workflow/
https://opensource.org/licenses/BSD-3-Clause

icepyx

132 Chapter 14. Contribution Guidelines

CHAPTER

FIFTEEN

HOW TO CONTRIBUTE

On this page we briefly provide basic instructions for contributing to icepyx. We encourage users to follow the git pull
request workflow. For contribution examples, please see contribution guidelines.

15.1 Contributing for the first time

1. If you don’t have one, sign up for a GitHub account (visit https://github.com/ and ‘sign up for GitHub account’).

2. Clone the icepyx repo: Open a terminal window. Navigate to the folder on your computer where you want to store
icepyx. For example,

cd /Users/YOURNAMEHERE/documents/ICESat-2

Within this folder, clone the icepyx repo by executing

git clone https://github.com/icesat2py/icepyx.git

You should receive confirmation in terminal of the files loading into your workspace. For help navigating git and
GitHub, see this guide. GitHub also provides a lot of great how-to materials for navigating and contributing.

15.2 Every time you contribute

1. To add new content, you need to create a new branch. You can do this on GitHub by clicking the down arrow next
to ‘development’ and making a new branch (you can give it whatever name you want - the naming doesn’t matter much
as it will only be a temporary branch).

2. Navigate to the new branch you created. Make any edits or additions on this branch (this can be done locally or on
GitHub directly). After you do this, commit your changes and add a descriptive commit message.

3. After committing the changes, push them to GitHub if you were working locally. Then, open a pull request to merge
your branch into the development branch. Members of the icepyx community will review your changes and may ask
you to make some more.

4. If this is your first PR, someone on the icepyx team should add you to the contributors list. icepyx follows the
all-contributors specification using the contributors bot to add new contributors. You are also welcome to add yourself
by adding a comment with the text:

@all-contributors add @[GitHub_handle] for a, b, and c

where a, b, etc. is a list of the appropriate contribution emojis. The bot will open a separate PR to add the contributor
or new contribution types!

133

https://www.asmeurer.com/git-workflow/
https://www.asmeurer.com/git-workflow/
https://github.com/
https://the-turing-way.netlify.app/collaboration/github-novice/github-novice-firststeps.html?highlight=github%20account
https://docs.github.com/en
https://github.com/all-contributors/all-contributors
https://allcontributors.org/docs/en/emoji-key

icepyx

5. Repeat these steps, creating a new branch and ultimately a pull request for each change. More, smaller pull requests
are easier to debug and merge than fewer large ones, so create pull requests regularly!

15.3 Steps for working with icepyx locally

Each time you begin working on icepyx (and especially each time you are about to create a new branch), update your
local copy of icepyx with

git pull https://github.com/icesat2py/icepyx.git

to ensure you have the most up to date version of icepyx in your library.

If you are modifying portions of code, you will need to run

pip install -e.

within your Python environment to use your real-time edited version of the code during runtime.

15.4 Setting up a Development Work Environment

icepyx uses a few tools to ensure that files have consistent formatting and run tests. You can easily install the ones most
frequently used by creating a new mamba (or conda) environment (from the home level of your local copy of the icepyx
repo) with

mamba env create --name icepyx-env --channel conda-forge -f requirements-dev.txt -f␣
→˓requirements.txt

and then pip installing icepyx as described above and below.

15.5 Considerations with Jupyter Notebook

If you are working in Jupyter Notebook, in addition to manually installing your working version in your Python envi-
ronment with

pip install -e.

you will need to dynamically reload icepyx within your notebook by executing

%load_ext autoreload
import icepyx as ipx
%autoreload 2

in a notebook cell. This allows the Jupyter Notebook to detect and use changes you’ve made to the underlying code.

134 Chapter 15. How to Contribute

CHAPTER

SIXTEEN

RECOGNIZING CONTRIBUTIONS

We are extremely grateful to everyone who has contributed to the success of the icepyx community and software. This
document outlines our goals to give appropriate attribution to all contributors to icepyx in ways that are fair and diverse
and supportive of professional goals. We define contributions broadly as:

Efforts towards achieving icepyx’s goals, including (1) writing code, tests, or documentation, (2) devel-
opment of example workflows, (3) development, significant contributions, or maintenance of a tailored
package that broadens the functionality of icepyx, (4) feedback and suggestions, (5) community building,
(6) etc.

We recognize contributions in the following ways.

Note: These policies are not set in stone and may be changed to accommodate the growth of the project
or the preferences of the community.

16.1 Contributors List

This project follows the all-contributors specification. When you contribute to icepyx for the first time or in a new way,
you or a maintainer can use the All Contributors bot to open a PR <https://allcontributors.org/docs/en/bot/usage>`_
to recognize your contribution. Comment on an existing PR with @all-contributors please add @<username> for
<contributions>. This will add you (or your new contribution type) to the CONTRIBUTORS.rst file located in the top
level directory; the file is packaged and distributed with icepyx, so each release has a record of contributors and their
contribution types.

16.2 Changelog

Each release includes a changelog of updates. Everyone who has made a commit since the last release is listed, with
new contributors indicated. This list is automatically generated using a Sphinx extension; where available, full names
are used. If the user’s full name is not available on GitHub, their GitHub handle is used.

135

https://github.com/all-contributors/all-contributors

icepyx

16.3 Example Workflows

Many of the example workflows included within icepyx were developed by individuals or small teams for educational
or research purposes. We encourage example developers to provide proper recognition for these efforts both within the
notebook itself and by adding contributors to the Contributors List for attribution as describered herein.

16.4 Version Releases on Zenodo

Each new release of icepyx is archived on Zenodo.

Following the collaborative approach of The Turing Way, we aim to encourage community leadership and shared
ownership of icepyx. To this end, beginning with version 0.6.4 (the full adoption of the all-contributors specification)
we collectively represent the icepyx authors in citations (including Zenodo releases) as “The icepyx Developers”.

As described above, a complete list of contributors and their contribution types is available via the Contributors List.

** A note about releases <v0.6.4: Prior version releases adhere to authorship guidelines in place at the time,
listing individual contributors who had manually added their names to CONTRIBUTORS.rst. Authorship
order was alphebetical by last name, except in cases where a substantial contribution was made by one or
more contributors to a given release. **

16.5 Peer-Reviewed Publications (Papers)

We will occasionally prepare manuscripts describing our software and its uses for submission to peer-reviewed journals.
These efforts are typically “in addition to” contributions made directly to icepyx (community or repository) and thus
may have specific author lists. To be eligible for authorship on a peer-reviewed publication, contributors must:

1. Contribute to the development (including code, documentation, and examples) of icepyx. Substantial
non-code contributions may constitute eligibility for authorship.

2. Contribute ideas, participate in authorship discussions (see next paragraph), write, read, and review the
manuscript in a timely manner, and provide feedback (acknowledgement of review is sufficient, but we’d
prefer more).

Author order will be determined based on co-author discussion, led by the publication preparation leader, ideally during
the initial planning stages of manuscript preparation (i.e. as soon as an idea matures into a potential manuscript and
before writing begins). Authorship will continue to be evaluated throughout the manuscript preparation process. Dis-
cussions will consider authorship norms (e.g. How does author order convey participation and prestige? How critical is
first authorship to career advancement for each member of the team? Do an individual’s contributions meet authorship
criteria or are they more suited to acknowledgements?). Author order determination may also consider metrics such as
the number of commits since the last major release with an associated paper (git shortlog vX.0.0...HEAD -sne),
contributions that do not have associated commits, and contributions to the preparation of the manuscript.

136 Chapter 16. Recognizing Contributions

https://zenodo.org/record/7729175
https://the-turing-way.netlify.app/community-handbook/acknowledgement/acknowledgement-members.html

icepyx

16.6 Motivation and References

Concepts and models of attribution, credit, contribution, and authorship can vary across time, application, and commu-
nities. FORCE11 has an entire Attribution Working Group dedicated to working on attribution for research products.
URSSI hosted a workshop in 2019 (report) to identify core issues and propose solutions to challenges around software
credit. For software, current best practices (e.g.) emphasize the importance of having a document such as this one
to describe an individual community’s policies for credit, authorship, and attribution. This document is an effort to
describe icepyx’s policies, with an awareness that they may change to accomodate community growth, best practices,
and feedback.

We do not attempt to identify contribution levels through the number of commits made to the repository (e.g. git
shortlog -sne) or active engagement on GitHub (e.g. through issues, discussions, and pull requests) and Discourse.
The latter is difficult to quantify, and the use of squash merges into the development branch can mask the relative
complexity of various contributions and does not necessarily capture significant conceptual contributions.

Copyright notice: Preparation of this document and our credit policies was inspired in part by these authorship guide-
lines provided by Fatiando a Terra and The Turing Way. We encourage potential contributors to consider the resources
provided by the NASA High Mountain Asia Team (HiMAT) and established or emerging best practices in their com-
munity. Please get in touch if you would like to discuss updates to this contribution recognition policy.

16.6. Motivation and References 137

https://force11.org/
https://force11.org/groups/attribution-working-group/
https://urssi.us/
https://urssi.us/blog/2019/03/24/report-from-urssi-workshop-on-software-credit-citation-and-metrics/
https://arxiv.org/pdf/2012.13117.pdf
https://github.com/fatiando/contributing/blob/master/AUTHORSHIP.md
https://github.com/fatiando/contributing/blob/master/AUTHORSHIP.md
https://github.com/fatiando
https://the-turing-way.netlify.app/community-handbook/acknowledgement/acknowledgement-members.html
https://highmountainasia.github.io/team-collaboration/authorship/

icepyx

138 Chapter 16. Recognizing Contributions

CHAPTER

SEVENTEEN

ICEPYX INTERNALS

17.1 Authentication

Authentication in icepyx is handled using a Mixin class. A Mixin class is a class which defines functionality that
may be desired by multiple other classes within a library. For example, at this time both the Query and Variables
classes need to be able to authenticate. Instead of defining the same properties and functionality twice, icepyx has an
EarthdataAuthMixin class that is inherited by both modules.

Property Access

Even though they aren’t explicity defined in the init method, properties like .session are accessible on a Query object
because they are inherited. The code that indicates this to Python is EarthdataAuthMixin.__init__(self).

For example:

import icepyx as ipx

region_a = ipx.Query('ATL06',[-45, 74, -44,75],['2019-11-30','2019-11-30'], \
start_time='00:00:00', end_time='23:59:59')

authentication can be accessed via the Query object
region_a.session
region_a.s3login_credentials

Adding authentication to a new class

To add authentication to an additional icepyx class, one needs to add the Mixin to the class. To do this:

1. Add the EarthdataAuthMixin class to the class constructor (and import the mixin)

2. Add the EarthdataAuthMixin init method within the init method of the new class EarthdataAuthMixin.
__init__(self)

3. Access the properties using the public properties (Ex. self.session, not self._session.)

A minimal example of the new class (saved in icepyx/core/newclass.py) would be:

from icepyx.core.auth import EarthdataAuthMixin

class MyNewClass(EarthdataAuthMixin):
def __init__(self):

self.mynewclassproperty = True

EarthdataAuthMixin.__init__(self)

(continues on next page)

139

icepyx

(continued from previous page)

def my_exciting_new_method(self):
This method requires login
s = self.session
print(s)
return 'We authenticated inside the method!'

The class would then be accessible with:

from icepyx.core.newclass import MyNewClass

n = MyNewClass()

n.session
n.my_exciting_new_method()

140 Chapter 17. icepyx Internals

CHAPTER

EIGHTEEN

QUEST SUPPORTED DATASETS

On this page, we outline the datasets that are supported by the QUEST module. Click on the links for each dataset to
view information about the API and sensor/data platform used.

18.1 List of Datasets

18.1.1 Argo

The Argo mission involves a series of floats that are designed to capture vertical ocean profiles of temperature, salin-
ity, and pressure down to ~2000 m. Some floats are in support of BGC-Argo, which also includes data relevant for
biogeochemical applications: oxygen, nitrate, chlorophyll, backscatter, and solar irradiance.

A paper outlining the Argo extension to QUEST is currently in preparation, with a citable preprint available in the near
future.

Argo Workflow Example

18.2 Adding a Dataset to QUEST

Want to add a new dataset to QUEST? No problem! QUEST includes a template script (dataset.py) that may be
used to create your own querying module for a dataset of interest.

Once you have developed a script with the template, you may request for the module to be added to QUEST via GitHub.
Please see the How to Contribute page How to Contribute for instructions on how to contribute to icepyx.

Detailed guidelines on how to construct your dataset module are currently a work in progress.

141

icepyx

142 Chapter 18. QUEST Supported Datasets

CHAPTER

NINETEEN

ICEPYX DEVELOPMENT PLAN

This page provides a high-level overview of focus areas for icepyx’s ongoing and future development. This list is
intentionally general and not exhaustive. Instead, specific development tasks and new functionality implementations
are driven by individual developers/teams.

Our ongoing efforts are tracked as issues on our GitHub issue tracker. We invite you to join the active discussions
happening there.

19.1 Major Themes for Development

19.1.1 Enhancing User Interactivity and Visualization

icepyx aims to continually reduce the need for researchers to rewrite “routine” code by enabling easy end-to-end data
visualization and providing a simple, community-based framework for reproducibility.

19.1.2 Open Science Example Use Cases

Research is the primary driver for development of icepyx functionality. We encourage you to use icepyx as a framework
for finding and processing your ICESat-2 data, from designing your analysis to writing code to analyze your data to
generating presentation-quality figures. We welcome example use cases from all disciplines. Some topics currently
being investigated using ICESat-2 data:

• snow height in non-glaciated regions

• subsurface ocean structure (including bathymetry)

• vegetation canopy height

• glacier ice velocity

• sea level change

• archaeological site discovery

• phytoplankton concentrations under sea ice

• iceberg detection

Please contact us if you have any questions or would like to submit an example workflow showcasing your research!

143

https://github.com/icesat2py/icepyx/issues

icepyx

19.1.3 Data Analysis and Interaction

Many data analysis techniques (filtering, corrections, trend detection, feature detection, statistics, machine learning,
etc.) are used by researchers to analyze ICESat-2 data products. As part of the broader Python ecosystem, relevant
libraries that specialize in these techniques are easily incorporated into a single work environment. In addition, creating
ICESat-2 specific extensions for Xarray and Pandas data structures will enhance our ability to utilize these analysis tools
by providing easy ways to manipulate ICESat-2 data in the appropriate input type required by each library. Workflows
showcasing complex analyses to answer pressing science questions provide an opportunity for new reseachers to build
on existing work.

19.1.4 Validation and Integration with Other Products

The complexity of multiple data access systems, often with different metadata formats and API access types, presents
a challenge for finding and integrating diverse datasets. Driven by researcher use cases, icepyx contains a consistent
framework for adding a new product/sensor to an existing data analysis pipeline, improving researcher ability to easily
compare diverse datasets across varying sensor types and spatial and temporal scales.

19.2 Modifying the Development Plan

Everyone is invited to review and propose new themes for the Development Plan. icepyx is continually evolving and
its direction is driven by your feedback and contributions.

If you’d like to add a theme to this development plan, please submit your idea in GitHub Discussions to solicit commu-
nity feedback. Once there is agreement on your idea, submit a pull request to update the Development Plan, including
a link to the discussion.

144 Chapter 19. icepyx Development Plan

https://github.com/icesat2py/icepyx/discussions

CHAPTER

TWENTY

RELEASE GUIDE

Interested in the process for creating a new icepyx release? Here is a guide outlining the process and how to fix common
mistakes.

20.1 Create a Release Log

Create a new branch from the development branch. You’ll create and update the release documents on this branch.

In doc/source/user_guide/changelog is a file called template.rst. Make a copy of this file and update the
copy’s filename to your version release number. We follow standard semantic versioning practices.

Create an entry for the current “Latest Release”:

Version 0.x.y

.. toctree::
:maxdepth: 2

v0.x.y

Add your new version to the doc/source/user_guide/changelog/index.rst as the “Latest Release”.

Latest Release (Version 0.8.0)

.. toctree::
:maxdepth: 2

v0.8.0

Now, populate your new release file by filling in the template. You will probably need to make the release date a few
days out to allow time for review and merging.

There are no strict rules for how you generate the content for the file. One method is to use a git log command to
display the commit history of the development branch since the last release. If you’re using git in terminal, checkout
development and make sure your local development branch is up-to-date (git pull). Then run git log 'v0.
x.y'...HEAD where ‘v0.x.y’ is the current/latest release. You can sort and edit the commit messages as needed to
populate the changelog.

Add your new changelog file, commit and push your changes, and head to GitHub to open a Pull Request (PR).

145

https://semver.org/

icepyx

20.2 Create a Release Pull Request to the Development Branch

On GitHub, create a PR from your release branch into the development branch. Once the PR is reviewed and all the
tests pass, you or your reviewer can squash and merge the PR into the development branch.

Now you’re ready to update main and actually package your new release!

20.3 Create a Pull Request from Development to Main

The changelog is completed, we’re not waiting for any more PRs to be merged, and we’re ready to share the newest
version of icepyx with the world. Create a PR to merge the development branch into main (so main will now be your base
branch). If any tests fail, you may need to do some debugging. This will involve submitting a new PR to development
with whatever debugging changes you’ve made. Once merged into development, any changes will automatically be
reflected in this step’s PR, and the tests will rerun automatically.

With an approving review and passed tests in hand, you’re ready to push the new release! Unlike when you merge new
features into development with a squash merge, for this step you’ll want to use a plain old merge. This makes it easy
to keep development and main even instead of diverging due to a series of merge commits. This website does a great
job explaining the how and why of not using a squash merge here.

However, if you forget and squash merge, never fear. You can simply revert the commit and begin again from the
beginning of this step.

20.4 Update the Development Branch Head

We want to make sure at this point that the development and main branches are even. You can do this with a git API,
but the way to do it using git in terminal is:

git pull
git checkout development
git merge main
git push origin development:development

If you have to create a merge commit message, STOP! You’ve done something wrong and need to go back to the
previous step. Creating the merge commit will make main and development diverge and the repo maintainers sad.

20.5 Tag the Release

Last, but potentially most importantly, we need to tag and create the release. This step will trigger the package to be
built and update the distribution available from conda and PyPI. It will also publish the new release on Zenodo. GitHub
makes releases easy - on the repo’s home page, simply select “Releases” from the right hand side and then the “Draft a
New Release” button. Add a new tag with the version number of your release, making sure it points to the main branch
(by default, GitHub will suggest the development branch!) Fill out the form and create the release.

If you tag the release too soon (and there end up being more commits), or point it to the wrong branch/commit, never
fear. You can delete the release from GitHub with the click of a button. If you want to reuse the version tag though
(you most likely do), you’ll first have to remove the tag locally and push the updated (deleted) tag to GitHub:

git push --delete origin tagname

146 Chapter 20. Release Guide

https://goiabada.blog/git-tricks-keeping-branches-even-7ddc8647d1f3

icepyx

See this guide on how to delete local and remote git tags.

Then you can go back to the beginning of this step to create a new tag and release. Alternatively, you may be better off
yanking the previous release (but leaving the tag) and increasing your patch number in a new tag+release. This may be
necessary if you have a failing release already on PyPI.

20.6 Finishing Up

If all went according to plan, you should see your most recent version of icepyx available from PyPI within a few
moments. It won’t happen immediately, as they need to properly build the installation files. To make the latest release
available via conda-forge, a few bots will run and let the feedstock maintainers know when it’s ready or if there are any
issues. Then they can manually approve the merge to the feedstock repo and the new release will be available in a few
minutes.

Congratulations! You released a new version of icepyx! Share the good news on Twitter or Slack and appreciate your
hard work and contributions to open-source development.

20.6. Finishing Up 147

https://devconnected.com/how-to-delete-local-and-remote-tags-on-git/

icepyx

148 Chapter 20. Release Guide

CHAPTER

TWENTYONE

CONTRIBUTOR COVENANT CODE OF CONDUCT

21.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion,
or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

21.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

149

icepyx

21.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, is-
sues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

21.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed representative at an online or offline event.

21.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders respon-
sible for enforcement at jbscheick-at-gmail-dot-com. All complaints will be reviewed and investigated promptly and
fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

21.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

21.6.1 1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

21.6.2 2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

150 Chapter 21. Contributor Covenant Code of Conduct

icepyx

21.6.3 3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

21.6.4 4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the project community.

21.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.
contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq.
Translations are available at https://www.contributor-covenant.org/translations.

21.7. Attribution 151

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

icepyx

152 Chapter 21. Contributor Covenant Code of Conduct

CHAPTER

TWENTYTWO

ICESAT-2 RESOURCE GUIDE

This guide contains information regarding available resources for working with ICESat-2 datasets, both specifically
(e.g. for ICESat-2 data) and more broadly (e.g. point cloud analysis of LiDAR datasets). It includes resources formally
developed by/with support from NASA as well as individual and community efforts stemming from personal interest
to ongoing research workflows.

Please feel free to add your project or another resource to this guide by submitting a pull request. We reserve the right
to reject suggested resources that fall outside the scope of icepyx.

22.1 Other Ways to Access ICESat-2 Data

icepyx aims to provide intuitive, object-based methods for finding, obtaining, visualizing, and analyzing ICESat-2 data
as part of an open, reproducible workflow that leverages existing tools wherever possible (see Complementary GitHub
Repos) and can be run locally, using high performance computing, or in the cloud using Pangeo. A few other options
available for querying, visualizing, and downloading ICESat-2 data files are:

• NSIDC (DAAC) Data Access

– Select “ICESat-2 Data Sets” from the left hand menu. Choose your dataset (ATL##). Then, use the spatial
and temporal filters to narrow your list of granules available for download.

• OpenAltimetry

– Collaboration between NSIDC, Scripps, and San Diego Supercomputer Center

– A web tool to visualize and download ICESat and ICESat-2 surface heights

– Data may be subsetted by data product, reference ground track (RGT), and beam

– Currently available ICESat-2 datasets are: ATL06 (land ice height), ATL07 (sea ice height), ATL08
(land/vegetation height), ATL13 (water surface height)

22.2 Software Packages for Working with ICESat-2 Data

icepyx is but one of several software packages designed to improve user experience with ICESat-2 data. The links
below highlight other packages active in the community.

153

https://nsidc.org/data/icesat-2
https://openaltimetry.org/

icepyx

22.2.1 Open-Source Packages

ICESat-2 can be tricky to process for the first time, especially if working with the ATL03 data. Software packages
have been developed to make ICESat-2 data analysis easier for new and experienced users. Here, we highlight some
commonly-used software packages developed by the science community. Most of these can be used alongside Icepyx
to facilitate ICESat-2 data processing. Most of these packages are callable through Python, though others may require
access to other software. Keep this in mind before attempting to use any package or plugin.

• SlideRule

– collaboration between the ICESat-2 science team and University of Washington

– A Python client to process ICESat-2 ATL03 data prior to download.

– Aggregates ATL03 data into line segments of user-defined length, creating a customized form of the ATL06
product.

– Data may also be subsetted based on spatial bounds and photon classification.

• IceFlow

– by National Snow and Ice Data Center (NSIDC)

– A Python library designed to simplify the co-registration of cryospheric datasets.

– Matches georeferencing parameters across data sets, allowing a user to derive a time series across multiple
datasets for a given region.

– Currently valid datasets include ICESat, ICESat-2, and Operation IceBridge.

• PhoREAL

– by Applied Research Laboratories, University of Texas at Austin

– A Python-based toolbox that may also be run as a GUI (Windows only).

– Allows for quick processing of ATL03/08 data, which may then be used to generate 2-D plots of ICESat-2
surface heights.

– Users may also convert processed data to .las, .csv, and .kml file formats.

22.2.2 Complementary GitHub Repositories

Here we describe a selection of publicly available Python code posted on GitHub with applicability for working with
ICESat-2 data. This includes repositories that are more broadly designed for working with LiDAR/point cloud datasets
in general. These repositories represent independent but complimentary projects that we hope to make easily inter-
operable within icepyx in order to maximize capabilities and minimize duplication of efforts. Conversations about
how to best accomplish this have been ongoing since the conception of icepyx, and we welcome everyone to join the
conversation (please see our contact page).

Note: This list is a compilation of publicly available GitHub repositories and includes some annotations to reflect how
they relate to icepyx. Please check each repository’s licensing information before using or modifying their code. Addi-
tional resources having to do specifically with obtaining ICESat-2 data are noted in the last section of this document.

• captoolkit

– by Fernando Paolo, Johan Nilsson, Alex Gardner

– NASA’s JPL Cryosphere Altimetry Processing Toolkit

– Set of command line utilities to process, reduce, change format, etc. altimetry data from ICESat-2 and
several other altimeters (e.g. ERS, CryoSat-2, IceBridge)

154 Chapter 22. ICESat-2 Resource Guide

https://github.com/ICESat2-SlideRule/sliderule-icesat2
https://github.com/nsidc/NSIDC-Data-Tutorials/tree/main/notebooks/iceflow
https://github.com/icesat-2UT/PhoREAL
https://github.com/fspaolo/captoolkit

icepyx

– Includes utilities to read and extract variables of interest, compute and apply various corrections (e.g. tides,
inverse barometer), detrend and correct data, do a variety of geographic computations and manipulations
(e.g. raster math, masking, slope/aspect), and tile/grid/reduce data

– We envision making captoolkit’s utilities available as part of the icepyx ecosystem in order for users to
quickly obtain and pre-process/correct/process ICESat-2 data.

• Icesat2-viz

– by Aimee Barciauskas-bgse

– Exploration for visualizing ICESat-2 data products; focused on 3-D visualization using mapbox tools

– We hope to take advantage of Icesat2-viz’s work to provide 3-D visualizations of ICESat-2 data to expand
on the 2-D visualization options currently available within icepyx.

• Nsidc-subsetter

– by Tyler Sutterley

– Retrieve IceBridge, ICESat, and ICESat-2 data using the NSIDC subsetter API

– Command line tool

– Download data and convert it into a georeferenced format (e.g. geojson, kml, or shapefile)

– We envision use of Nsidc-subsetter to improve interoperability between icepyx and the NSIDC subsetter
API. Currently, icepyx has very limited subsetting capabilities that are not easy to access or find more
information about.

• pointCollection

– by Ben Smith

– Efficiently organize and manipulate a database of points using this set of utilities

– Access data fields using dot syntax and quickly index subsets of previously downloaded data

– We hope to capitalize on some of the concepts of data access, indexing, and processing presented in point-
Collection to improve our interfacing with ICESat-2 data within icepyx.

22.2.3 MATLAB Packages

• PhotonLabeler

– by Lonesome Malambo

– A MATLAB-based user interface that allows for manual interpretation of ICESat-2 photons.

– Users may classify photons based on surface type, signal/noise likelihood, or other user-defined labels.

– Derives simple statistics for any user-defined photon classifications.

22.2. Software Packages for Working with ICESat-2 Data 155

https://github.com/abarciauskas-bgse/icesat2-viz
https://github.com/tsutterley/nsidc-subsetter
https://github.com/SmithB/pointCollection
https://github.com/Oht0nger/PhoLabeler

icepyx

22.3 Resources Developed For and During Hackweeks

Previous hackweeks gave participants the opportunity to develop codes to help download and/or analyze ICESat-2 data.
Many of these projects are inactive, but they may provide useful workflows for users to work with.

22.3.1 First ICESat-2 Cryospheric Hackweek at the University of Washington (June
2019)

This June 2019 event resulted in the production of a series of tutorials, developed primarily by members of the ICESat-2
Science Team and early data users, aimed at educating the cryospheric community in obtaining and using ICESat-2
datasets. During the actual Hackweek, teams of researchers and data scientists developed a series of interesting projects
related to their interests/research. Many of these resources were drawn from in the initial development of icepyx.

Tutorials

The available tutorials, most of which contain one or more Jupyter Notebooks to illustrate concepts, are listed below.
Additional information for citing (including licensing) and running (e.g. through a Pangeo Binder) these tutorials can
be found at the above link. They are published on Zenodo.

1. Overview of the ICESat-2 mission (slides)

2. Introduction to Open Science and Reproducible Research

3. Access and Customize ICESat-2 Data via NSIDC API

4. Intro to HDF5 and Reduction of ICESat-2 Data Files

5. Clouds and ICESat-2 Data Filtering

6. Gridding and Filtering of ICESat/ICESat-2 Elevation Change Data

7. ICESat-2 for Sea Ice

8. Geospatial Data Exploration, Analysis, and Visualization

9. Correcting ICESat-2 data and related applications

10. Numerical Modeling

Projects

Though in many cases preliminary, these project repositories c an provide useful starting points to develop effective
cryospheric workflows where more formal examples and functionality have not yet been developed.

Sea Ice

• Floes are Swell

– Calculate chord length (CLD) and lead width (LWD)

• Segtrax

– Create trajectories of sea ice motion (creates Python trajectory class)

Glaciers and Ice Sheets

• Crackup

– Investigating small-scale features such as crevasses and water depth

156 Chapter 22. ICESat-2 Resource Guide

https://github.com/ICESAT-2HackWeek/ICESat2_hackweek_tutorials
https://github.com/ICESAT-2HackWeek/projects_2019
https://doi.org/10.5281/zenodo.3360994
https://github.com/ICESAT-2HackWeek/intro_ICESat2
https://github.com/ICESAT-2HackWeek/intro-jupyter-git
https://github.com/ICESAT-2HackWeek/data-access
https://github.com/ICESAT-2HackWeek/intro-hdf5
https://github.com/ICESAT-2HackWeek/Clouds_and_data_filtering
https://github.com/ICESAT-2HackWeek/gridding
https://github.com/ICESAT-2HackWeek/sea-ice-tutorials
https://github.com/ICESAT-2HackWeek/geospatial-analysis
https://github.com/ICESAT-2HackWeek/data-correction
https://gitlab.com/danshapero/icesat-2019-06-20
https://github.com/ICESAT-2HackWeek/projects_2019
https://github.com/ICESAT-2HackWeek/Floes-are-Swell
https://icesat2hackweek2019.slack.com/messages/CKQ08MBBR
https://github.com/ICESAT-2HackWeek/crackup

icepyx

• GlacierSat2

– Constrain surface types (e.g. wet vs. dry snow) using ICESat-2 data over the Juneau Icefield, working
towards looking at seasonal elevation changes

• WaterNoice

– Detection of hydrologic features (e.g. meltwater ponds, firn aquifer seeps, blue ice megadunes, icebergs,
etc.) in ATL06 land ice product

• SnowBlower/blowing snow

– Evaluate the blowing snow flag and look at blowing snow models

• Cross-trak (xtrak)

– Interpolation between ICESat-2 tracks

– Create gridded elevation data from multiple ICESat-2 tracks

• Ground2Float

– Identify grounding zones using ICESat-2 data (using the slope-break method)

• Topohack

– Resolve topography over complex terrain

22.3.2 Second [Virtual] ICESat-2 Cryospheric Hackweek Facilitated by the Univer-
sity of Washington

The 2020 ICESat-2 Cryospheric Science Hackweek was the first virtual Hackweek held by the University of Washing-
ton. While originally planned as a five-day, in-person workshop, the event was shifted to a fully virtual/remote setting
in light of stay-at-home orders and travel restrictions in place to curb the spread of COVID-19.

To accomodate multiple time zones and limit the daily duration of online tutorial sessions, the event was spread out
over the course of ten days. The first week had three half-days of interactive tutorials/lectures. The second week had
four days that included some interactive tutorials/lectures and scheduled times where instructors were available to help
participants with a facilitated exploration of datasets and hands-on software development.

This June 2020 event resulted in the production of a series of tutorials, developed by volunteer instructors and presented
during the event. During the actual Hackweek, teams of researchers and data scientists developed a series of interesting
projects related to their interests/research.

Tutorials

The tutorials from this event live within a dedicated GitHub repository and are published on Zenodo. You can run the
tutorials by following the instructions here. The published tutorial repo also includes links to presentation slides and
videos of the recorded presentations.

Tutorial Topics:

1. Introductory Session 1. ICESat-2 Mission: Satellite, Sensor, and Data 1. Git and GitHub 1. Jupyter and iPython
1. Geospatial Analysis with Python 1. Introduction to ICESat-2 Sea Ice and Land Ice Products and Data Access 1.
Programmatic ICESat-2 data access 1. Introduction to HDF5 and ICESat-2 data files 1. Land ice applications 1. Sea
ice applications 1. Science data generation 1. Machine learning

22.3. Resources Developed For and During Hackweeks 157

https://github.com/ICESAT-2HackWeek/glaciersat2
https://github.com/ICESAT-2HackWeek/WaterNoice
https://github.com/ICESAT-2HackWeek/Snowblower
https://github.com/ICESAT-2HackWeek/xtrak
https://github.com/ICESAT-2HackWeek/ground2float
https://github.com/ICESAT-2HackWeek/topohack
https://icesat-2hackweek.github.io/learning-resources/
https://github.com/ICESAT-2HackWeek/2020_ICESat-2_Hackweek_Tutorials
https://github.com/ICESAT-2HackWeek/projects_2020
https://github.com/ICESAT-2HackWeek/2020_ICESat-2_Hackweek_Tutorials
https://doi.org/10.5281/zenodo.3966463
https://github.com/ICESAT-2HackWeek/2020_ICESat-2_Hackweek_Tutorials#re-create-the-icesat-2-hackweek-jupyterlab-environment-with-binder

icepyx

Projects

Though in many cases preliminary, these project repositories can provide useful starting points to develop effective
cryospheric workflows where more formal examples and functionality have not yet been developed.

• icepyx

– Contributions to icepyx included new example notebooks, packaging on Python Package Index, installation
instructions, and automated code coverage reports.

Sea Ice

• leading to phytoplankton

– Obtain and visualize coincident ICESat-2, Sentinal-2, and Argo Float data

– Many members of this group still meet regularly (2 years out!) and are creating a template to add new
coincident datasets to icepyx.

– Group members (including newer members) contribute to icepyx as collaborative developers and code
reviewers.

• overcast

– Build tools to merge data and explore the effects of sea ice leads on clouds in the Arctic

Glaciers and Ice Sheets

• Seasonal Snow

– Compare ICESat-2 data with high resolution DEMs over complex (mountainous) terrain

• unsupervised

– unsupervised surface classification of ATL03 photons

• FirnAndMelt

• CloudMask

– Fetch, classify, and label ICESat-2 data

– Still an ongoing collaboration??

• crossovers

– processing of non-overlapping ICESat-2 tracks

• surface_velocity

– Infer surface ice velocity from repeat passes and across beams.

– Continued work resulted in a poster at AGU Fall Meeting 2020

• Assimilation

– Compare ICESat-2 elevations with multiple DEM raster data types.

– Quantify errors and compare results regionally

– Contributed additional authentication methods to icepyx and provided initial code for what eventually be-
came the Visualization module.

158 Chapter 22. ICESat-2 Resource Guide

https://github.com/ICESAT-2HackWeek/projects_2020
https://github.com/ICESAT-2HackWeek/icepyx_team
https://github.com/ICESAT-2HackWeek/leading_to_phytoplankton
https://github.com/ICESAT-2HackWeek/overcast
https://github.com/ICESAT-2HackWeek/SeasonalSnow
https://github.com/ICESAT-2HackWeek/surface_classification
https://github.com/ICESAT-2HackWeek/FirnAndMelt
https://github.com/ICESAT-2HackWeek/CloudMask
https://github.com/ICESAT-2HackWeek/crossovers
https://github.com/ICESAT-2HackWeek/surface_velocity
https://github.com/ICESAT-2HackWeek/Assimilation

icepyx

22.3.3 Third ICESat-2 Hackweek Facilitated by the University of Washington
eScience Institute

This event is currently being planned, and will take place 21-25 March 2022. Please see the event website for more
information.

Tutorials

The tutorials for this event will be available to download for interactive use as well as pre-rendered on the event’s
website. The website will be linked here once it is live, and final information posted here after the event.

Projects

Projects will be listed here after the event.

22.3. Resources Developed For and During Hackweeks 159

https://icesat-2.hackweek.io/

icepyx

160 Chapter 22. ICESat-2 Resource Guide

CHAPTER

TWENTYTHREE

CONTACT US

• Need help installing, running, or using icepyx? Ask for help on Discourse or GitHub Discussions.

• Found a bug? Post an issue on GitHub!

• Want to request or contribute a feature? Share your idea on GitHub Discussions.

• Have a question or want to know more? Join us for a virtual meeting (see below).

• Want to get involved? Do one or more of the above, or reach out to one of the dev team members individually.
We’re excited to hear your thoughts and provide help!

Absolutely NO software development is necessary to join and contribute to our community. We look forward to meeting
you!

23.1 Virtual Meetings

Our team (developers, users, scientists, educators) consists primarily of volunteers. We meet on an as-needed basis via
Zoom to provide support, troubleshoot issues, and plan development and collaboration efforts.

Our meetings are open to all, with upcoming meeting information available via Discourse, GitHub Discussions, or by
request. The QUEST (Query Unify Explore SpatioTemporal) team meets weekly on Mondays to co-work on integrating
additional sensors into the icepyx workflow. Please contact us if you are interested in joining the QUEST team.

23.2 Ongoing Efforts

In addition to the ongoing development of icepyx itself, the ICESat-2 community continues to grow through a number
of related initiatives, workshops, and events:

• CryoCloud

• ICESat-2 Hackweeks

161

https://discourse.pangeo.io/c/science/icesat-2/16
https://github.com/icesat2py/icepyx/discussions
https://github.com/icesat2py/icepyx/issues
https://github.com/icesat2py/icepyx/discussions
https://discourse.pangeo.io/c/science/icesat-2/16
https://github.com/icesat2py/icepyx/discussions
https://cryointhecloud.com/
https://icesat-2.hackweek.io/

icepyx

162 Chapter 23. Contact Us

CHAPTER

TWENTYFOUR

WHO IS USING ICEPYX?

How is icepyx being used by the ICESat-2 data user community?

Is your team or project using icepyx but not listed below? Please add your organization to the appropriate list with a
link to your project/product (or get in touch and we’ll add it)!

24.1 Projects and Organizations

Projects and organizations that use icepyx.

• NSIDC

• IceFlow

• University of Washington e-Science institute

• ICESat-2 Hackweeks

• SlideRule

• Colorado School of Mines Glaciology Laboratory

24.2 Publications About icepyx

Peer-reviewed publications about icepyx software

24.3 Presentations and Materials Featuring icepyx

Presentations that feature or explain icepyx

163

https://nsidc.org/data/icesat-2/tools
https://github.com/nsidc/NSIDC-Data-Tutorials/tree/main/notebooks/iceflow
https://escience.washington.edu/
https://icesat-2.hackweek.io/
http://icesat2sliderule.org/
https://github.com/MinesGlaciology

icepyx

24.4 Publications Utilizing icepyx

Research that utilizes icepyx for ICESat-2 data

164 Chapter 24. Who is using icepyx?

CHAPTER

TWENTYFIVE

ICEPYX ADOPTION

Estimating usage of open-source software is a fundamentally difficult task, and “easy” metrics like number of downloads
have the potential to be misleading.

We are excited by the enthusiastic adoption of icepyx by the ICESat-2 data user community, and despite these limitations
in data tracking metrics, we have begun (November 2020) to track aggregate user downloads and page views as shown
below.

Although technologies exist, to respect user privacy and international regulations (without requiring browser cookies),
we intentionally do not track the IP addresses of users accessing our code or documentation. As a result, we are unable
to view usage statistics for specific pages/examples or repeat visitors. If you find certain materials especially helpful,
we’d appreciate hearing from you!

25.1 GitHub Traffic

Clones and views of the icepyx library directly on GitHub.

25.2 PyPI Downloads

Non-mirrored downloads of icepyx from the Python Package Index (e.g. using pip install icepyx).

Icon images from Flaticon (by Freepik, Pixel perfect, and Eucalyp) and NASA.

165

https://blog.dask.org/2020/01/14/estimating-users
https://pypi.org/
https://flaticon.com
https://www.nasa.gov/

icepyx

166 Chapter 25. icepyx Adoption

BIBLIOGRAPHY

[1] Scheick, Jessica, Leong, Wei Ji, Bisson, Kelsey, Arendt, Anthony, Bhushan, Shashank, Fair, Zachary, Hagen,
Norland Raphael, Henderson, Scott, Knuth, Friedrich, Li, Tian, Liu, Zheng, Piunno, Romina, Ravinder, Nitin,
Setiawan, Landung "Don", Sutterley, Tyler, Swinski, JP, and Anubhav. icepyx: querying, obtaining, analyzing,
and manipulating ICESat-2 datasets. Journal of Open Source Software, 8(84):4912, 2023. URL: https://doi.org/
10.21105/joss.04912, doi:10.21105/joss.04912.

[1] Arendt, Anthony, Scheick, Jessica, Shean, David, Buckley, Ellen, Grigsby, Shane, Haley, Charley, Heagy, Lindsey,
Mohajerani, Yara, Neumann, Tom, Nilsson, Johan, Markus, Thorsten, Paolo, Fernando S., Perez, Fernando, Petty,
Alek, Schweiger, Axel, Smith, Benjamin, Steiker, Amy, Alvis, Sebastian, Henderson, Scott, Holschuh, Nick, Liu,
Zheng, and Sutterley, Tyler. 2020 ICESat-2 Hackweek Tutorials. August 2020. URL: https://doi.org/10.5281/
zenodo.3966463, doi:10.5281/zenodo.3966463.

[2] Scheick, J, Bisson, K, Fair, Z, Piunno, R, Leong, WJ, Lopez, L, and Hall, S. icepyx as an icebreaker: starting
conversations and building competencies in open science. Invited abstract and poster. American Geophysical
Union Fall Meeting, Chicago, IL, USA. 12-16 December 2022., 2022. doi:10.5281/zenodo.7837428.

[3] Scheick, J., Arendt, A., Heagy, L., Paolo, F., Perez, F., and Steiker, A. \texttt icepyx: developing community and
software around ICESat-2 Data. 2020. Abstract and eLightning (poster + presentation). American Geophysical
Union Fall Meeting, virtual, USA. 1-17 December 2020.

[4] Scheick, J., Arendt, A., Heagy, L., and Perez, F. Introducing icepyx, an open source Python library for obtaining
and working with ICESat-2 data. 2019. Abstract and poster. American Geophysical Union Fall Meeting, San
Francisco, California, USA. 9-13 December 2019. doi:10.1002/essoar.10501423.1.

[5] Scheick, J., Arendt, Anthony, Haley, Charley, Henderson, Scott, Koh, Jane, Setiawan, Don, Alterman, Naomi,
Meyer, Joachim, Cristea, Nicoleta, Schweiger, Axel, Barciauskas, Aimee, Smith, Ben, Piunno, Romina, Shap-
ero, Daniel, Fair, Zachary, Arndt, Philipp, Leong, Wei Ji, Sutterley, Tyler, Snow, Tasha, Beig, Mikala,
Besso, Hannah, Liu, Zheng, Joughin, Ian, Bisson, Kelsey, and Sauthoff, Wilson. ICESat-2 Hackweek Web-
site. April 2022. If you use this book, please cite it as below. URL: https://doi.org/10.5281/zenodo.6462479,
doi:10.5281/zenodo.6462479.

[6] Scheick, Jessica, Bisson, Kelsey, Li, Tian, Leong, Wei Ji, and Arendt, Anthony. Collaborative computational
resource development around ICESat-2 data: the icepyx community and library. Earth and Space Science
Open Archive, pages 9, 2022. Abstract and poster (presented by Wei Ji Leong). American Geophysical Union
Fall Meeting, New Orleans, LA, USA. 13-17 December 2021. URL: https://doi.org/10.1002/essoar.10511316.1,
doi:10.1002/essoar.10511316.1.

[1] Bisson, K. M. and Cael, B. B. How are under ice phytoplankton related to sea ice in the Southern Ocean? Geo-
physical Research Letters, 48(21):e2021GL095051, 2021. doi:10.1029/2021GL095051.

[2] Eidam, Emily, Walker, Catherine, Bisson, Kelsey, Paris, Matthew, and Cooper, Lillian. Novel application of
ICESat-2 ATLAS data to determine coastal light attenuation as a proxy for suspended particulate matter. In
OCEANS 2022, Hampton Roads, volume, 1–7. 2022. doi:10.1109/OCEANS47191.2022.9977084.

167

https://doi.org/10.21105/joss.04912
https://doi.org/10.21105/joss.04912
https://doi.org/10.21105/joss.04912
https://doi.org/10.5281/zenodo.3966463
https://doi.org/10.5281/zenodo.3966463
https://doi.org/10.5281/zenodo.3966463
https://doi.org/10.5281/zenodo.7837428
https://doi.org/10.1002/essoar.10501423.1
https://doi.org/10.5281/zenodo.6462479
https://doi.org/10.5281/zenodo.6462479
https://doi.org/10.1002/essoar.10511316.1
https://doi.org/10.1002/essoar.10511316.1
https://doi.org/10.1029/2021GL095051
https://doi.org/10.1109/OCEANS47191.2022.9977084

icepyx

[3] Fernando, Garrido. Mapping the diversity of agricultural systems in the Cuellaje Sector, Cotacachi, Ecuador
using ATL08 for the ICESat-2 Mission and machine learning techniques. In Gervasi, Osvaldo, Murgante, Be-
niamino, Misra, Sanjay, Garau, Chiara, Blečić, Ivan, Taniar, David, Apduhan, Bernady O., Rocha, Ana Maria
A. C., Tarantino, Eufemia, and Torre, Carmelo Maria, editors, Computational Science and Its Applications –
ICCSA 2021, volume 12957, 170–181. Cham, 2021. Springer International Publishing. doi:10.1007/978-3-030-
87013-3_13.

[4] Freer, B. I. D., Marsh, O. J., Hogg, A. E., Fricker, H. A., and Padman, L. Modes of Antarctic tidal grounding
line migration revealed by Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) laser altimetry. The Cryosphere,
17(9):4079–4101, 2023. URL: https://tc.copernicus.org/articles/17/4079/2023/, doi:10.5194/tc-17-4079-2023.

[5] Ideström, Petter. Remote sensing of cryospheric surfaces: small scale surface roughness signatures in satellite
altimetry data. Master's thesis, UmeåUniversity, Sweden, Sept. 2023. URL: https://www.diva-portal.org/smash/
get/diva2:1801057/FULLTEXT01.pdf.

[6] Li, T., Dawson, G. J., Chuter, S. J., and Bamber, J. L. Mapping the grounding zone of Larsen C Ice Shelf,
Antarctica, from ICESat-2 laser altimetry. The Cryosphere, 14(11):3629–3643, 2020. URL: https://tc.copernicus.
org/articles/14/3629/2020/, doi:10.5194/tc-14-3629-2020.

[7] Musthafa, Mohamed, Singh, Gulab, and Kumar, Praveen. Comparison of forest stand height interpolation of GEDI
and ICESat-2 LiDAR measurements over tropical and sub-tropical forests in India. Environmental Monitoring
and Assessment, 195(1):71, 2022. URL: https://doi.org/10.1007/s10661-022-10657-w, doi:10.1007/s10661-022-
10657-w.

[8] Shean, David, Swinski, J.p., Smith, Ben, Sutterley, Tyler, Henderson, Scott, Ugarte, Carlos, Lidwa, Eric,
and Neumann, Thomas. SlideRule: enabling rapid, scalable, open science for the NASA ICESat-2 mission
and beyond. Journal of Open Source Software, 8(81):4982, 2023. URL: https://doi.org/10.21105/joss.04982,
doi:10.21105/joss.04982.

[9] Sothe, Camile, Gonsamo, Alemu, Lourenço, Ricardo B., Kurz, Werner A., and Snider, James. Spatially
continuous mapping of forest canopy height in Canada by combining GEDI and ICESat-2 with PALSAR
and Sentinel. Remote Sensing, 14(20):5158, Oct 2022. Attribution to icepyx from 15 Oct 2022 Twitter
post, https://twitter.com/rblourenco/status/1581320878511382528. URL: http://dx.doi.org/10.3390/rs14205158,
doi:10.3390/rs14205158.

[10] van Leeuwen, Gijs. The automated retrieval of supraglacial lake depth and extent from ICESat-2 photon clouds
leveraging DBSCAN clustering. 2022. Utrecht University Masters Thesis. URL: https://studenttheses.uu.nl/
bitstream/handle/20.500.12932/43402/MSC_thesis_ICESat2_GJvanLeeuwen.pdf?sequence=1.

168 Bibliography

https://doi.org/10.1007/978-3-030-87013-3_13
https://doi.org/10.1007/978-3-030-87013-3_13
https://tc.copernicus.org/articles/17/4079/2023/
https://doi.org/10.5194/tc-17-4079-2023
https://www.diva-portal.org/smash/get/diva2:1801057/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1801057/FULLTEXT01.pdf
https://tc.copernicus.org/articles/14/3629/2020/
https://tc.copernicus.org/articles/14/3629/2020/
https://doi.org/10.5194/tc-14-3629-2020
https://doi.org/10.1007/s10661-022-10657-w
https://doi.org/10.1007/s10661-022-10657-w
https://doi.org/10.1007/s10661-022-10657-w
https://doi.org/10.21105/joss.04982
https://doi.org/10.21105/joss.04982
http://dx.doi.org/10.3390/rs14205158
https://doi.org/10.3390/rs14205158
https://studenttheses.uu.nl/bitstream/handle/20.500.12932/43402/MSC_thesis_ICESat2_GJvanLeeuwen.pdf?sequence=1
https://studenttheses.uu.nl/bitstream/handle/20.500.12932/43402/MSC_thesis_ICESat2_GJvanLeeuwen.pdf?sequence=1

PYTHON MODULE INDEX

i
icepyx.core.APIformatting, 89
icepyx.core.auth, 91
icepyx.core.granules, 92
icepyx.core.is2ref, 95
icepyx.core.spatial, 96
icepyx.core.temporal, 99
icepyx.core.validate_inputs, 103
icepyx.core.visualization, 103

169

icepyx

170 Python Module Index

INDEX

Symbols
__init__() (icepyx.GenQuery method), 61
__init__() (icepyx.Query method), 63
__init__() (icepyx.Quest method), 81
__init__() (icepyx.Read method), 79
__init__() (icepyx.Variables method), 83

A
about_product() (in module icepyx.core.is2ref), 95
append() (icepyx.Variables method), 87
auth (icepyx.core.auth.EarthdataAuthMixin property),

91
AuthenticationError, 91
avail() (icepyx.Variables method), 85
avail_granules() (icepyx.Query method), 72

B
build_params() (icepyx.core.APIformatting.Parameters

method), 89

C
check_dateline() (in module icepyx.core.spatial), 97
check_req_values() (icepyx.core.APIformatting.Parameters

method), 89
check_s3bucket() (in module

icepyx.core.validate_inputs), 103
check_valid_date_range() (in module

icepyx.core.temporal), 99
check_values() (icepyx.core.APIformatting.Parameters

method), 89
CMRparams (icepyx.Query property), 65
combine_params() (in module

icepyx.core.APIformatting), 89
convert_string_to_date() (in module

icepyx.core.temporal), 100
cycles (icepyx.Query property), 66
cycles() (in module icepyx.core.validate_inputs), 103

D
dates (icepyx.Query property), 66
download() (icepyx.core.granules.Granules method), 92

download_granules() (icepyx.Query method), 73

E
earthdata_login() (icepyx.core.auth.EarthdataAuthMixin

method), 91
earthdata_login() (icepyx.Query method), 74
EarthdataAuthMixin (class in icepyx.core.auth), 91
end (icepyx.core.temporal.Temporal property), 99
end_time (icepyx.Query property), 66
extent (icepyx.core.spatial.Spatial property), 96
extent_as_gdf (icepyx.core.spatial.Spatial property),

96
extent_file (icepyx.core.spatial.Spatial property), 96
extent_type (icepyx.core.spatial.Spatial property), 96
extract_product() (in module icepyx.core.is2ref), 95
extract_version() (in module icepyx.core.is2ref), 95

F
filelist (icepyx.Read property), 80
files_in_latest_n_cycles() (in module

icepyx.core.visualization), 105
fmt_for_CMR() (icepyx.core.spatial.Spatial method), 96
fmt_for_EGI() (icepyx.core.spatial.Spatial method), 97
fmted_keys (icepyx.core.APIformatting.Parameters

property), 89

G
generate_OA_parameters()

(icepyx.core.visualization.Visualize method),
103

GenQuery (class in icepyx), 59
geodataframe() (in module icepyx.core.spatial), 97
get_avail() (icepyx.core.granules.Granules method),

93
gran_IDs() (in module icepyx.core.granules), 94
gran_paras() (in module icepyx.core.visualization),

105
Granules (class in icepyx.core.granules), 92
granules (icepyx.Query property), 67
grid_bbox() (icepyx.core.visualization.Visualize

method), 104
gt2spot() (in module icepyx.core.is2ref), 95

171

icepyx

I
icepyx.core.APIformatting

module, 89
icepyx.core.auth

module, 91
icepyx.core.granules

module, 92
icepyx.core.is2ref

module, 95
icepyx.core.spatial

module, 96
icepyx.core.temporal

module, 99
icepyx.core.validate_inputs

module, 103
icepyx.core.visualization

module, 103
info() (in module icepyx.core.granules), 94

L
latest_version() (icepyx.Query method), 74
latest_version() (in module icepyx.core.is2ref), 95
load() (icepyx.Read method), 80

M
make_request() (icepyx.core.visualization.Visualize

method), 104
module

icepyx.core.APIformatting, 89
icepyx.core.auth, 91
icepyx.core.granules, 92
icepyx.core.is2ref, 95
icepyx.core.spatial, 96
icepyx.core.temporal, 99
icepyx.core.validate_inputs, 103
icepyx.core.visualization, 103

O
order_granules() (icepyx.Query method), 75
order_vars (icepyx.Query property), 67

P
parallel_request_OA()

(icepyx.core.visualization.Visualize method),
104

Parameters (class in icepyx.core.APIformatting), 89
parse_var_list() (icepyx.Variables static method), 85
place_order() (icepyx.core.granules.Granules

method), 93
poss_keys (icepyx.core.APIformatting.Parameters prop-

erty), 89
prod_version() (in module

icepyx.core.validate_inputs), 103

product (icepyx.Query property), 68
product (icepyx.Read property), 80
product_all_info() (icepyx.Query method), 76
product_summary_info() (icepyx.Query method), 76
product_version (icepyx.Query property), 68

Q
Query (class in icepyx), 62
query_icesat2_filelist()

(icepyx.core.visualization.Visualize method),
104

Quest (class in icepyx), 81

R
Read (class in icepyx), 78
remove() (icepyx.Variables method), 88
reqparams (icepyx.Query property), 68
request_OA_data() (icepyx.core.visualization.Visualize

method), 104

S
s3login_credentials

(icepyx.core.auth.EarthdataAuthMixin prop-
erty), 92

session (icepyx.core.auth.EarthdataAuthMixin prop-
erty), 92

show_custom_options() (icepyx.Query method), 76
Spatial (class in icepyx.core.spatial), 96
spatial (icepyx.Query property), 69
spatial_extent (icepyx.Query property), 69
start (icepyx.core.temporal.Temporal property), 99
start_time (icepyx.Query property), 70
subsetparams() (icepyx.Query method), 70

T
Temporal (class in icepyx.core.temporal), 99
temporal (icepyx.Query property), 71
to_string() (in module icepyx.core.APIformatting), 90
tracks (icepyx.Query property), 71
tracks() (in module icepyx.core.validate_inputs), 103

U
user_check() (in module icepyx.core.visualization),

105

V
validate_bounding_box() (in module

icepyx.core.spatial), 98
validate_date_range_date() (in module

icepyx.core.temporal), 100
validate_date_range_datestr() (in module

icepyx.core.temporal), 101

172 Index

icepyx

validate_date_range_datetime() (in module
icepyx.core.temporal), 101

validate_date_range_dict() (in module
icepyx.core.temporal), 102

validate_polygon_file() (in module
icepyx.core.spatial), 98

validate_polygon_list() (in module
icepyx.core.spatial), 98

validate_polygon_pairs() (in module
icepyx.core.spatial), 99

validate_times() (in module icepyx.core.temporal),
102

Variables (class in icepyx), 83
vars (icepyx.Read property), 80
Visualize (class in icepyx.core.visualization), 103
visualize_elevation() (icepyx.Query method), 77
visualize_spatial_extent() (icepyx.Query

method), 77
viz_elevation() (icepyx.core.visualization.Visualize

method), 105

Index 173

	Origin and Purpose
	Installation
	Quickstart
	Using mamba
	Using pip
	For the latest features

	Citing icepyx
	icepyx
	icepyx Dependencies
	ICESat-2 Data

	Accessing ICESat-2 Data
	Quick-Start Guide
	Key Steps for Programmatic Data Access
	Create an ICESat-2 data object with the desired search parameters
	More information about your query object
	Querying a data product
	Log in to NASA Earthdata
	Additional Parameters and Subsetting
	More details about the configuration parameters
	Subsetting

	Place the order
	Download the order

	Subsetting ICESat-2 Data
	What is SUBSETTING anyway?
	Discover Subsetting Options
	Why do I have to provide spatial bounds to icepyx even if I don’t use them to subset my data order?

	About Data Variables in a query object
	Determine what variables are available for your data product

	Why not just download all the data and subset locally? What if I need more variables/granules?
	Building the default wanted variable list

	Applying variable subsetting to your order and download
	Why does the subsetter say no matching data was found?
	Check the variable list in your downloaded file

	Check the downloaded data
	Compare to the variable paths available in the original data
	Credits

	ICESat-2’s Nested Variables
	Why do ICESat-2 products need a custom variable manager?
	Creating or Accessing ICESat-2 Variables
	1. Access Variables via the .order_vars property of a Query object
	2. Access via the .vars property of a Read object
	3. Create a stand-alone Variables object

	Interacting with ICESat-2 Data Variables
	ICESat-2 data variables
	Determine what variables are available

	Building your wanted variable list
	Modifying your wanted variable list
	Examples (Overview)
	Example Track 1 (Land Ice - run with ATL06 dataset)
	Example 1.1: choose variables
	Example 1.2: specify beams and variable
	Example 1.3: add/remove selected beams+variables
	Example 1.4: keyword_list
	Example 1.5: target a specific variable + path
	Example 1.6: add variables not specific to beams/profiles
	Example 1.7: add all variables+paths of a group
	Example 1.8: add all possible values for variables+paths
	Example 1.9: remove all variables+paths associated with a beam
	Example 1.10: generate a default list for the rest of the tutorial

	Example Track 2 (Atmosphere - run with ATL09 dataset commented out at the start of the notebook)
	Example 2.1: choose variables
	Example 2.2: specify beams/profiles and variable
	Example 2.3: add/remove selected beams+variables
	Example 2.4: keyword_list
	Example 2.5: target a specific variable + path
	Example 2.6: add variables not specific to beams/profiles
	Example 2.7: add all variables+paths of a group
	Example 2.8: add all possible values for variables+paths
	Example 2.9: remove all variables+paths associated with a profile
	Example 2.10: generate a default list for the rest of the tutorial

	Using your wanted variable list
	With a Query object
	With a Read object
	With a local filepath
	Credits

	Visualizing ICESat-2 Elevations
	Visualize spatial extent
	Visualize ICESat-2 elevation using OpenAltimetry API
	Plot elevation for individual RGT
	Move on to data downloading from NSIDC if these are the products of interest
	Alternative Access Options to Visualize ICESat-2 elevation using OpenAltimetry API
	Credits

	Reading ICESat-2 Data in for Analysis
	Motivation
	Approach
	Quick-Start Guide
	Key steps for loading (reading) ICESat-2 data
	Step 0: Get some data if you haven’t already
	Step 1: Set data source path
	Glob Strings
	Recursive Directory Search

	Step 2: Create an icepyx read object
	Step 3: Specify variables to be read in
	Step 4: Loading your data

	On to data analysis!
	Credits

	ICESat-2 AWS cloud data access
	Notes
	Querying for data and finding s3 urls
	Get the granule s3 urls

	Determining variables of interest
	A Note on listing variables using s3 urls
	A Note on authentication

	Choose a data file and access the data
	Some important caveats
	Credits

	QUEST Example: Finding Argo and ICESat-2 data
	Define the Quest Object
	Getting the data

	icepyx Documentation (API Reference)
	Query Class
	Constructors
	icepyx.GenQuery
	icepyx.Query

	Attributes
	icepyx.Query.CMRparams
	icepyx.Query.cycles
	icepyx.Query.dates
	icepyx.Query.end_time
	icepyx.Query.granules
	icepyx.Query.order_vars
	icepyx.Query.product
	icepyx.Query.product_version
	icepyx.Query.reqparams
	icepyx.Query.spatial
	icepyx.Query.spatial_extent
	icepyx.Query.subsetparams
	icepyx.Query.start_time
	icepyx.Query.temporal
	icepyx.Query.tracks

	Methods
	icepyx.Query.avail_granules
	icepyx.Query.download_granules
	icepyx.Query.earthdata_login
	icepyx.Query.latest_version
	icepyx.Query.order_granules
	icepyx.Query.product_all_info
	icepyx.Query.product_summary_info
	icepyx.Query.show_custom_options
	icepyx.Query.visualize_spatial_extent
	icepyx.Query.visualize_elevation

	Read Class
	Constructor
	icepyx.Read

	Attributes
	icepyx.Read.filelist
	icepyx.Read.product
	icepyx.Read.vars

	Methods
	icepyx.Read.load

	Quest Class
	Constructors
	icepyx.Quest

	Attributes
	Methods

	Variables Class
	Constructor
	icepyx.Variables

	Methods
	icepyx.Variables.avail
	icepyx.Variables.parse_var_list
	icepyx.Variables.append
	icepyx.Variables.remove

	Components
	APIformatting
	EarthdataAuthMixin
	granules
	is2cat
	is2ref
	spatial
	temporal
	Examples
	Examples

	validate_inputs
	visualize

	icepyx ChangeLog
	Latest Release (Version 1.0.0)
	What’s new in 1.0.0 (5 January 2024)
	New (and Updated) Features
	Bug fixes
	Deprecations
	Maintenance
	Documentation

	Contributors

	Version 0.8.1
	What’s new in 0.8.1 (14 November 2023)
	Bug fixes
	Contributors

	Version 0.8.0
	What’s new in 0.8.0 (12 September 2023)
	New Features
	Deprecations
	Maintenance
	Documentation
	Other

	Contributors

	Version 0.7.0
	What’s new in 0.7.0 (20 March 2023)
	New Features
	Bug fixes
	Deprecations
	Maintenance
	Documentation

	Contributors

	Version 0.6.4
	What’s new in 0.6.4 (28 October 2022)
	New Features
	Bug fixes
	Deprecations
	Maintenance
	Documentation

	Contributors

	Version 0.6.3
	What’s new in 0.6.3 (28 July 2022)
	New Features
	Bug fixes
	Maintenance
	Documentation

	Contributors

	Version 0.6.2
	What’s new in 0.6.2 (17 March 2022)
	Bug fixes
	Maintenance

	Contributors

	Version 0.6.0 + 0.6.1
	What’s new in 0.6.0 (4 March 2022)
	New Features
	Bug fixes
	Maintenance
	Documentation

	Contributors

	Version 0.5.0
	What’s new in 0.5.0 (8 December 2021)
	New Features
	Bug fixes
	Deprecations
	Maintenance
	Documentation
	Other

	Contributors

	Version 0.4.1
	What’s new in 0.4.1 (01 December 2021)
	New Features
	Bug fixes
	Deprecations
	Maintenance
	Documentation
	Other

	Contributors

	Version 0.4.0
	What’s new in 0.4.0 (13 May 2021)
	New Features
	Bug fixes
	Maintenance
	Documentation
	Other

	Contributors

	Version 0.3.4
	What’s new in v0.3.4 (23 March 2021)
	New Features
	Bug fixes
	Deprecations
	Maintenance
	Documentation
	Other

	Contributors

	Version 0.3.3
	What’s new in v0.3.3 (11 March 2021)
	New Features
	Bug fixes
	Deprecations
	Maintenance
	Documentation
	Other

	Contributors

	Version 0.3.2
	What’s new in v0.3.2 (1 December 2020)
	New Features
	Bug fixes
	Deprecations
	Maintenance
	Documentation

	Contributors

	Version 0.3.1
	What’s new in v0.3.1 (10 September 2020)
	New Features
	Bug fixes
	Deprecations
	Maintenance
	Documentation

	Contributors

	Version 0.2-alpha
	What’s new in v0.2-alpha (6 May 2020)
	New Features
	Bug fixes
	Deprecations
	Maintenance
	Documentation

	Contributors

	Version 0.1-alpha
	What’s new in v0.1-alpha (7 April 2020)
	Features
	Bug fixes
	Deprecations
	Documentation
	Other

	Contributors

	Project Contributors
	Contribution Guidelines
	Ways to Contribute
	Requesting a Feature
	Reporting a Bug
	Questions and Help
	Other Resources

	Adding Examples
	Contributing Code
	First Steps
	General Guidelines
	Basic Steps to Contribute
	Licensing

	Improving Documentation and Testing
	Attribution for Contributions

	How to Contribute
	Contributing for the first time
	Every time you contribute
	Steps for working with icepyx locally
	Setting up a Development Work Environment
	Considerations with Jupyter Notebook

	Recognizing Contributions
	Contributors List
	Changelog
	Example Workflows
	Version Releases on Zenodo
	Peer-Reviewed Publications (Papers)
	Motivation and References

	icepyx Internals
	Authentication

	QUEST Supported Datasets
	List of Datasets
	Argo

	Adding a Dataset to QUEST

	icepyx Development Plan
	Major Themes for Development
	Enhancing User Interactivity and Visualization
	Open Science Example Use Cases
	Data Analysis and Interaction
	Validation and Integration with Other Products

	Modifying the Development Plan

	Release Guide
	Create a Release Log
	Create a Release Pull Request to the Development Branch
	Create a Pull Request from Development to Main
	Update the Development Branch Head
	Tag the Release
	Finishing Up

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	ICESat-2 Resource Guide
	Other Ways to Access ICESat-2 Data
	Software Packages for Working with ICESat-2 Data
	Open-Source Packages
	Complementary GitHub Repositories
	MATLAB Packages

	Resources Developed For and During Hackweeks
	First ICESat-2 Cryospheric Hackweek at the University of Washington (June 2019)
	Tutorials
	Projects

	Second [Virtual] ICESat-2 Cryospheric Hackweek Facilitated by the University of Washington
	Tutorials
	Projects

	Third ICESat-2 Hackweek Facilitated by the University of Washington eScience Institute
	Tutorials
	Projects

	Contact Us
	Virtual Meetings
	Ongoing Efforts

	Who is using icepyx?
	Projects and Organizations
	Publications About icepyx
	Presentations and Materials Featuring icepyx
	Publications Utilizing icepyx

	icepyx Adoption
	GitHub Traffic
	PyPI Downloads

	Bibliography
	Python Module Index
	Index

